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Abstract 
 
Endeavors in mobile robotics focus on developing autonomous vehicles that operate 

in dynamic and uncertain environments. By reducing the need for human-in-the-loop 

control, unmanned vehicles are utilized to achieve tasks considered dull or dangerous by 

humans. Because unexpected latency can adversely affect the quality of an autonomous 

system’s operations, which in turn can affect lives and property in the real-world, their 

ability to detect and handle external events is paramount to providing safe and 

dependable operation. Behavior-based systems form the basis of autonomous control for 

many robots. This thesis presents the unified behavior framework, a new and novel 

approach which incorporates the critical ideas and concepts of the existing reactive 

controllers in an effort to simplify development without locking the system developer 

into using any single behavior system. The modular design of the framework is based on 

modern software engineering principles and only specifies a functional interface for 

components, leaving the implementation details to the developers. In addition to its use of 

industry standard techniques in the design of reactive controllers, the unified behavior 

framework guarantees the responsiveness of routines that are critical to the vehicle’s safe 

operation by allowing individual behaviors to be scheduled by a real-time process 

controller. The experiments in this thesis demonstrate the ability of the framework to: 1) 

interchange behavioral components during execution to generate various global behavior 

attributes; 2) apply genetic programming techniques to automate the discovery of 

effective structures for a domain that are up to 122 percent better than those crafted by an 

expert; and 3) leverage real-time scheduling technologies to guarantee the responsiveness 

of time critical routines regardless of the system’s computational load. 
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UNIFIED BEHAVIOR FRAMEWORK 
FOR 

REACTIVE ROBOT CONTROL 
IN REAL-TIME SYSTEMS 

I. Introduction 

Robots and autonomous vehicles are used to achieve tasks that are dull, dangerous or 

difficult for humans. Although many robots are, and will continue to be controlled 

remotely, the need for human-in-the-loop control is shifting towards the assignment of 

high level objectives. Interplanetary applications, such as the exploration of Mars, 

struggle with one-way communication latencies between 10 and 20 minutes that make 

direct control of vehicles impractical. Research at NASA is exploring the use of rovers, 

airplanes, and balloons for exploration, such systems require the ability to accept broad 

direction and then conduct operations within the environment without human 

intervention. For systems operating autonomously in the real-world, an ability to detect 

and handle external events is paramount to providing safe, predictable, and dependable 

operation in environments where change and uncertainty is normal. 

In addition to the technical challenges presented by the design of autonomous 

systems, the effort required for development and testing grows exponentially with the 

addition of new capabilities. Traditionally a mobile robot design implements a specific 

type of behavior architecture for low-level control and risks becoming platform specific. 

This thesis proposes that implementing a modular behavior framework that encapsulates 

the reactive controller’s behavioral logic eases the development and testing of low-level 

routines by encouraging reuse and portability—resulting in faster development cycles 

that produce behaviors with fewer errors. Further, the modular design of the framework 

allows developers to use real-time scheduling techniques to ensure that a system’s critical 

routines remain predictably responsive to changes in the environment. In contrast to 

concurrent programming, the use of real-time technologies eases the design of systems 

that are both logically and temporally correct by eliminating the potential for 

unpredictable delays. 
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This chapter provides a high-level overview of the research conducted in this 

investigation. It covers the problem to be solved, an overview of behavior-based robotic 

applications and the need to provide real-time services to guarantee the responsiveness of 

critical system routines, the goals and objectives of this research investigation, and the 

sponsors. Chapter I also highlights the assumptions and risks of this research and 

provides an overview of the thesis document. 

1.1 Problem Statement 
Autonomous systems that operate in the real-world exist in an unbounded domain 

and have an inherent requirement to be both robust and responsive when faced with 

sudden and unpredictable changes in the environment. Behavior-based systems form the 

basis of autonomous control for many robots, each attempting to strike a balance between 

rational action and responsiveness. Traditionally, mobile robots implement a single 

behavior architecture for a given domain, thus binding its capabilities to the strengths and 

weaknesses of that architecture. This thesis proposes that many of the existing behavior-

based approaches share critical aspects and that each can be represented by a single 

straightforward framework that attempts to: 1) simplify development and testing; 2) 

promote the reuse of code; 3) support large hierarchical designs while restricting code 

complexity to base behaviors, and most importantly; 4) allow the developer the freedom 

to use the behavior-based system they feel is the most appropriate for the given domain.  

Additionally, research efforts for the Cooperative Autonomous Navigation and 

Sensing AFOSR lab task at AFRL/SNR indicate that timing is critical for routines that 

capture navigational data, especially as a vehicle’s frequency of motion increases. 

Autonomous navigation techniques that blend inertial and external reference data are 

sensitive to processing delays. Applications that are sensitive to timing errors require the 

ability to preempt a running process with bounded latency, making the system 

predictably responsive, even in unpredictable environments. The modular design of the 

unified behavior framework allows the execution of time critical behavior elements to be 

managed using real-time scheduling techniques to ensure safe, dependable robot 

operation in dynamic and uncertain domains by guaranteeing that the routines that detect 

and handle external events remain responsive. 
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1.2 Key Concepts 
The development of autonomous vehicles that can operate safely in dynamic and 

uncertain environments requires systems that are not only logically correct, but are 

predictably responsive as well. This requirement stems from the need for systems to 

allow deliberative process the computational time to set goals and perform planning 

operations while ensuring that the reactive routines that provide for the safety of the 

system are faithfully executed at scheduled intervals. The following is a high-level 

discussion of behavior-based robotics and the importance of real-time process 

scheduling. 

1.2.1 Behavior-based Robotics 
Ideally mobile robotics applications place vehicles into environments where 

uncertainty is normal. Environments like homes, offices, and public areas are inherently 

unconstrained, and the use of cost effective motors and sensors that are inaccurate and 

prone to failure add additional uncertainty about the environment. 

As intelligent vehicles are expected to handle increasingly more complex 

endeavors, their design, implementation and testing requirements grow by orders of 

magnitude. Symbolic approaches to world modeling are quickly overwhelmed trying to 

represent large or fine grain environments, both in computational time requirements and 

memory requirements. Alternatively, strictly reactive behavior-based controller 

implementations attempt to maintain responsiveness by abandoning goal directed 

optimality. 

Reactive behavior-based controllers employ a small number of behaviors using a 

single arbiter to perform action selection. These designs provide robust low-level control 

but are customized for specific environments, which makes reuse of these control 

structures for different scenarios or reuse on different robots rare. Reactive approaches 

are also plagued by complexity issues when they attempt to scale up to support additional 

system responsibilities. As theses controllers attempt to deliver reactive behaviors that are 

increasingly rational and goal oriented, they quickly grow in complexity, necessarily 

moving away from their roots as robust and responsive control elements. Thus reactive 
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controllers reach a capability ceiling because they lack a mechanism for managing their 

complexity [33]. 

To combat the capability ceiling, and because the deliberative qualities of symbolic 

approaches are equally important as the responsiveness of reactive approaches, both are 

combined in three-layer architectures [26]. A planning layer sets goals for the system 

which are then achieved by a sequencing element that activates and deactivates simple 

behaviors in a temporal order that achieves a higher order goal. The elegance of this 

approach is that low-level behaviors do not know the goals that they will be used to 

achieve [23]. In this context, reactive behaviors do not need to know the systems overall 

goals a priori, which allows them to remain simple, specialized and responsive. 

If sequences of specialized behaviors are usable as a means of working towards and 

achieving higher order goals and plans, then a mechanism exists that allows individual 

behaviors to be called on or activated interchangeably. The key question is, “How general 

is this mechanism?” Experience in the design of software systems has established that 

encapsulation via a well defined interface is an effective means allowing independent 

components to be used as interchangeable components. A direct result of abstracting 

specific implementations behind a general interface is that modular components become 

reusable. 

Reusability is an important attribute of a system because it reduces the time 

required for development and testing. Normally there is a significant amount of 

redundant control logic in a collection of task-oriented behaviors, thus we ask ourselves, 

“How can a new behavior be constructed quickly as a simple adaptation or construction 

of existing elements?” By incorporating existing behavior modules that have been 

previous tested for correctness, new designs capitalize on reuse as a way of reducing their 

design complexity. Hence, a hybrid controller or three-layer control architecture that 

incorporates the unified behavior framework as its behavioral basis enforces a 

generalized interface that supports modularity, functional abstraction, and reuse. Further, 

because the framework is modeled after the composite pattern [25], new behaviors can be 

formed as arbitrated hierarchies of atomic behaviors, existing hierarchical structures or 

any combination of the two. 
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The use of a framework that enforces a common interface for all behaviors and 

allows new behaviors to be formed rapidly as constructions of existing behaviors has two 

key affects on the design of reactive behavior structures. One is that the complexity of 

developing robust and coherent behaviors is reduced because atomic behavior elements 

become highly focused and more easily validated. The other is that the implementation 

approach of each behavior is left to the developer, allowing the use of a structure that is 

effective in given situations or simply one that is more familiar. 

The ridged use of abstraction to establish functional boundaries creates a modular 

environment where new structures can be easily formed as arrangements of existing 

components. The ability to use existing behavior structures in the construction of new 

ones allows designs to scale easily into large hierarchies while restricting code 

complexity to the base behaviors. Although many structural combinations will not yield 

coherent behaviors, experimentation is encouraged to discover ones that are semantically 

correct. Because individual behavior and arbiter elements are validated independently, 

the outward attributes of a behavior are isolated from the structural composition. Chapter 

V presents a case study that uses a genetic program to demonstrate how experimentation 

is used to automate the discovery of effective structural combinations. 

1.2.2 Real-Time Scheduling 
The development of robotic systems that attempt to balance their ability to be both 

deliberative and responsive in dynamic and changing environments face a difficult 

problem because simple processes that execute at frequent intervals are interleaved with 

planning and optimization algorithms that need to run for relatively long periods. Such a 

situation potentially introduces unpredictable delays where high-priority control routines 

are forced to wait until lower priority planning elements yield or are preempted by the 

operating system. Ideally, deliberative processes execute “between” the periodic 

execution of low-level control routines and the amount of computational time available 

for planning then fluctuates in response to the amount of change in the environment. In 

chaotic environments a system may be operating under reactive control continuously to 

maintain a safe operating envelope, leaving little time for deliberation. In quieter 

environments reactive control is only needed periodically, allowing the remaining 
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processor time to be used for deliberative calculations. The root of the problem is that the 

schedulers used by modern operating systems do not guarantee that the highest priority 

process will be the running process, only that the highest priority process will run next. 

The need to make some processes “more important” than others is becoming 

common in applications where responsiveness is important and milliseconds of delay 

count. Real-time operating systems are emerging that allow developers to designate some 

routines as time-sensitive, allowing them to immediately preempt the currently running 

process. The modular design of the unified behavior framework supports the ability to 

implement reactive control elements for real-time domains. This approach allows some or 

all of a system’s atomic behaviors to be scheduled as real-time tasks that can preempt the 

execution of higher-level processes. Section 3.3 provides an example of how real-time 

scheduling approaches allow periodic processes to be interleaved in a predicable manner 

that satisfies the needs of the system. Chapter V presents a case study that implements the 

multithreaded version of the framework that guarantees the periodic execution rate of the 

base behaviors by running in the context of a real-time operating system, thus 

demonstrating the ability of a mobile robot to remain responsive regardless of the 

processing load created by its deliberative ability. 

1.3 Research Goal 
The overall and guiding goals of this research are: 1) to show that a single 

straightforward framework can be used to represent many of the existing behavior-based 

approaches; and 2) to verify that such a framework supports the implementation of 

behavior-based controllers using real-time systems to ensure the responsiveness of low-

level control processes. 

1.4 Sponsor 
This research is part of the Cooperative Autonomous Navigation and Sensing 

(CANIS) Air Force Office of Scientific Research (AFOSR) lab task at the Reference 

Systems Branch of the Air Force Research Laboratory (AFRL/SNRN), Wright-Patterson 

Air Force Base. The autonomous navigation requirements for CANIS require the 

development of the real-time control system architecture presented in this thesis. Such a 
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control structure composes fundamental services used by higher level systems in a real-

time sensing and control environment for autonomous operation of unmanned land and 

aerial vehicles. 

1.5 Assumptions 
The techniques and approaches presented in this thesis attempt to avoid any 

requirement that a developer use a specific implementation language. It does, however, 

advocate the use of design techniques that draw on the fundamental principles of object 

oriented (OO) programming, which is currently the dominant programming paradigm. 

This assertion allows for the use of both statically-checked and dynamically-checked 

languages. The discussions and diagrams related to software implementation assume that 

the reader has basic exposure to UML notation [51] and OO design patterns [25]. 

The development of generalized code that is reusable across domains is an 

intractable problem while the reuse of design models is effective for establishing patterns 

of development across domains [28]. For this reason, general design concepts are 

presented that can be applied to encourage reuse and reduce development effort within a 

specific domain and provide a familiar design model that reduces the complexity of 

design, development, and testing in new domains. 

1.6 Thesis Overview 
The structure of this thesis is as follows: Chapter I introduces the problem and 

research goals. Chapter II provides a thorough overview of behavior-based robotics, 

presenting the aspects that apply to the ability of such systems to maintain a responsive 

basis of control for mobile robots. An introduction to concurrent and real-time 

programming is presented in Chapter III which also explores the current research efforts 

in mobile robotics that employ real-time architectures to ensure safety via guaranteed 

responsiveness in dynamic and uncertain domains. Chapter IV presents the detailed 

design of a unified behavior framework that accommodates the critical characteristics of 

existing reactive behavior structures, allowing them to be represented and developed as 

encapsulated modules that share a common interface. Three implementations of the 

unified behavior framework are presented as a means of highlighting the usage of the 
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framework to ease the complexity of designing and testing robot behaviors in Chapter V. 

Each case study is presented as an isolated experiment, including a description of its 

implementation, the associated results and a discussion of the results as they relate to the 

use of the framework. The final chapter, Chapter VI, presents concluding remarks and 

recommendations for future research into the use of real-time systems to enhance the 

capabilities of behavior-based robotics in changing environments. 
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II. Behavior-Based Robotics Background 

This chapter presents the current research in the area of behavior-based robotics with a 

particular focus on the deliberative and reactive aspects that each system contributes. The 

primary goal in the development of autonomous mobile robot systems is to create a 

system that can pursue goals and perform useful tasks in dynamic and unpredictable 

environments. Research in this field has established that such systems must be responsive 

to changes in the environment while maintaining the deliberative capability to make 

rational decisions about their actions. This requirement is necessary to ensure the safe and 

dependable operation of autonomous robots that may work and coexist along side 

humans or be used for extended periods of time in hostile environments without human 

intervention. 

The background material in this chapter is presented in three sections. The first 

section discusses traditional efforts to develop rational robots using symbolic world 

modeling, followed by a discussion of the reactive control architectures. The final section 

presents the three-layer architecture, the current architectural paradigm for mobile robots. 

2.1 Symbolic World Modeling 
Research efforts in robotics through about 1985 focused almost exclusively on 

planning and world modeling [26] in an attempt to develop completely rational mobile 

robots [44]. This sense-plan-act approach, Figure 2.1a, proved inadequate in dynamic and 

unpredictable environments, where the robot finds itself in trouble when its internal state 

loses sync with the reality that it is intended to represent [2]. This is because anything 

approaching a real world model typically requires so much time to maintain and develop 

plans for, that the state of the environment changes before the actions can be carried out, 

effectively nullifying the action sequence. Shakey [41] and Rover [39] are early examples 

of implementations that depend heavily on symbolic models of the world [16] and 

subsequently do not perform well in dynamic environments. The main problem is that a 

traditional Lorenz control loop [48] directly links the rate at which a robot can evaluate 
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and act on its environment to the computational time requirements of the planning 

module. 

The serial execution of the sense-plan-act control loop makes this paradigm most 

appropriate for simple robotic systems that do not require complex decomposition of the 

environment or the problem domain. For complex tasks, a different decomposition 

approach is needed to maintain a responsive control loop. 

 
Figure 2.1: Two organizational decomposition strategies for robot control (A) Sequential 
execution of functional modules; (B) Layered, task-based modules with parallel 
execution. 

2.2 Reactive Control Architectures 
The need to alleviate this planning bottleneck led tasks to be decomposed into 

collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self-

contradictory term, reactive planning [26]. The ideas behind reactive planning stem from 

arguments such as Braitenberg’s, who argues that the complex behavior of natural 

organisms may be the result of simple behaviors. Braitenberg further argues that by 

combining simple behaviors, more complex behaviors and attributes are possible [14]. In 

equivalent research Brooks claims that for many tasks, robots do not need traditional 

reasoning, only a tight coupling of sensing to action. He backs that claim with robust 

autonomous robots using the Subsumption architecture [15, 17]. 

2.2.1 Subsumption.  
The Subsumption architecture advocates for a layered control system based on task 

decomposition, an approach which is radically different from previous research. Figure 

2.1 highlights the quintessential paradigm shift from the sense-plan-act architecture to the 

new horizontal structure of Subsumption. This parallel organization naturally promotes 
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concurrent and asynchronous responses to sensor input. Each individual layer works to 

achieve its particular goal. Coordination between layers is achieved when complex 

actions (or higher layers) subsume simpler actions, or when low-level behaviors inhibit 

higher layers.  

Following Subsumption other reactive architectures emerge as effective robot 

control structures, each upholding the original tenants of reactive planning. Specifically, a 

system must be responsive to the environment, include a tight coupling of sensing to 

action (keeping little or no state representation), and should be robust, able to perform in 

the face of unanticipated circumstances or sensor failure. Additionally, systems need to 

be modular, using incremental development to add capabilities, and the system must have 

an execution that embraces parallelism and concurrency [4]. Many of these principles are 

a direct rejection of the monolithic sense-plan-act approach. In addition to Subsumption, 

five other well known reactive architectures are described here: Motor Schema, Circuit 

Architecture, Action-Selection, Colony Architecture, and Utility Fusion. 

2.2.2 Motor Schema 
Unlike the priority-ordered layers of Subsumption, the motor schema architecture 

emerged as a cooperative control approach, allowing for the simultaneous pursuit of 

multiple goals. This approach captures behavioral primitives as vector fields that support 

specific perception tasks (e.g., obstacle avoid, move-to-goal, stay-on-path, etc.) which are 

arbitrated as a normalized vector summation to form a continuous potential field. Since 

all schemas contribute to the resultant vector, the overall behavior of the robot is a 

byproduct of its individual schema goals. This approach is useful in navigation tasks, but 

is subject to local minima and cyclical paths [2]. 

2.2.3 Circuit Architecture. 
The circuit architecture is a hybridization that allows reactive behavior elements 

and logical formalisms to be bundled into arbitrated collections. Because priority 

arbitration occurs at each level of abstraction, developers can bundle unlike approaches 

into mediated hierarchies that are combinations of reactive approaches, logical 

formalisms, and situated automata [33]. 
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2.2.4 Action-Selection 
Action-selection is an architecture that uses activation levels as a dynamic 

mechanism of behavior selection. Individual behaviors are grouped as competence 

modules that respond when predefined conditions are detected. Activation levels are used 

to indicate a level of confidence that can persist while specific conditions exist or may 

decay over time. Action coordination is achieved by selecting the competence module 

with the highest activation level. When used in dynamic environments, action-selection 

gives the global behavior an emergent quality because there is no predefined layering or 

order of execution. Based on events in the environment, a robot may suddenly begin to 

display radically different attributes [37]. 

2.2.5 Colony Architecture 
Colony architecture is a direct descendant of Subsumption, allowing higher layers 

to suppress lower layers but eliminates the ability of lower layers to inhibit higher ones. 

As a result of enacting the suppression only approach, the colony architecture breaks 

away from the total ordering of layers found in Subsumption and permits the formation of 

priority based behavior hierarchies [20]. 

2.2.6 Utility Fusion 
The utility fusion architecture is an expansion of DAMN (Distributed Architecture 

for Mobile Navigation) [43]. Under this architecture, action selection is coordinated via 

an evaluation of the utility that would result from taking a particular action from a 

discreet set of actions. Like DAMN, the arbiter is central to the architecture, taking on the 

unique kinematics of the specific robot, allowing the evaluation behaviors to remain 

platform independent and reusable. Behaviors use their own criteria to assess the utility 

of a proposed future state. The action that collects the highest overall utility is enacted by 

the arbiter. Although actions are enacted in a winner-takes-all fashion, the utility fusion 

approach is considered to be cooperative because it selects the action that best serves the 

global goals of the system [44]. 
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2.2.7 Limitations of Reactive Control 
Most behavior-based controllers employ a single reactive architecture as a basis of 

control. While these designs provide robust low-level control, they are customized for 

specific environments and limited to the capabilities of the chosen architecture. The 

coordination of a broad set of behavioral skills to achieve a coherent complex behavior is 

an error-prone and tedious task that seems to be more of an art than a science [52] , which 

makes the reuse of existing control structures and behaviors on different robots 

uncommon. Such reactive approaches are further plagued by complexity issues when 

they attempt to scale up to support additional system responsibilities. As controllers 

attempt to deliver reactive behaviors that are increasingly rational and goal oriented, they 

quickly grow in complexity, necessarily moving away from their roots as robust and 

responsive control elements. Eventually, reactive controllers reach a capability ceiling 

because they lack a mechanism for managing their complexity [15]. 

The introduction of the BAP (behavior, action pattern, policy) framework breaches 

the subject of the capability ceiling faced by behavior-based controllers, asserting that the 

current architectures seem to have been established without much attention to modern 

software engineering techniques that are the industry standards of application 

programming [52]. In his paper, Utz suggests that any general purpose behavior 

architecture must address three key questions: 

1) How well will this behavior hierarchy scale to high levels? 

2) Does it allow for the reuse of behaviors? 

3) Can behaviors and planning be integrated? 

In addition to supporting the original tenants of reactive control, a general-purpose 

architecture should: maintain concurrent behavior execution as indispensable, support the 

ability to use multiple arbitration mechanisms, allow for the temporal sequencing of 

behavior sets to provide easy taskability of the robot, provide behavioral parameterization 

via functional abstraction, and support a hierarchical building policy with proper entry 

and exit semantics [52]. 
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Limitations of the sense-plan-act architectures to be responsive brought the advent 

of reactive control architectures that tightly couple sensing with action. Similarly, the 

need for reactive approaches to be deliberative resulted in the three-layer architecture. 

2.3 Three-Layer Architectures 
While reactive architectures that are organized as task based decompositions are 

responsive and able to operate in dynamic environments, they forfeit the ability to make 

plans and pursue goals. Because deliberative planning and reactive control are equally 

important for mobile robot navigation, when used appropriately, each complements the 

other and compensates for the other’s deficiencies [44]. 

Driven by the requirement that systems must not only be responsive in dynamic 

environments but rational and deliberative as well, the three-layer architecture has 

become a common paradigm for designing autonomous robot control architectures [11, 

26]. Under this approach, the structure of the software system consists of three main 

components: a reactive feedback control mechanism (the controller), a slow deliberative 

planner (the deliberator), and a sequencing mechanism that connects the first two 

components (the sequencer). Each layer of the architecture provides additional 

environment and sensor abstraction over the previous, and focuses on larger reasoning 

and goal time scales. 

The three-layer architecture’s incorporation of previous reactive planning 

approaches to form the controller element becomes known as reactive execution [26] 

where primitive behaviors are used to deliver robust and responsive low-level control. 

Despite the previous work on reactive behaviors, the controller remains the most time 

consuming segment to design and implement. Two three-layer architectures are discussed 

in detail, namely the Saphira architecture [34] and the 3T architecture [12]. 

2.3.1 Saphira Architecture 
The Saphira architecture is an integrated sensing and control system for robotic 

applications, which is implemented on Flakey, a custom research robot, and Pioneer, a 

small commercial robot from Real World Interface. While reactive behavior-based 

approaches are used to accomplish low-level control, a geometric representation of the 
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space around the robot is also kept that mediates between perception and action. This 

central representation, referred to as the Local Perceptual Space (LPS), is maintained by 

perceptual routines and used by action routines. At first glance, Saphira appears to be 

using a standard Blackboard architecture [48] where routines interact via a shared 

information space. Rather, the organization of Saphira is partly vertical and partly 

horizontal, using independent tasks to perform sensor fusion to update the LPS, which 

then affects the decisions of the action routines [34]. The vertical element emerges from 

the organization of perceptual and action routines into levels of cognitive ability. 

2.3.2 Three Tiered Robot Control 
The three tiered (3T) robot control architecture has been in use at NASA Johnson 

Space Center since 1992 in a variety of space robot research [13]. In general, 3T 

separates the basic robot intelligence problem into three interacting pieces, with each 

subsequent piece being increasingly rational. First, there is a layer of reactive skills that 

are robot specific. Skills at this layer are fast feedback loops that tightly couple sensing to 

acting. The next layer is a sequencing element which activates reactive skills in an order 

that moves the world state towards the current goal set by the planner. The sequencing 

portion of the architecture uses the Reactive Action Packages (RAPs) system [23] to 

organize and execute chains of procedures. At the highest level, Prodigy [53] is used as 

the deliberative planning and learning element that reasons in depth about goals, 

resources and timing constraints. 

2.4 Summary 
Typically, the deliberative algorithms and world representations that deliver rational 

plans and optimal solutions require considerable computation time and are unsuitable 

when used in dynamic environments. At the other end of the spectrum are simple 

algorithms that tightly couple sensors to motors and provide very fast responses in 

changing environments, but retain little or no state information and are not capable of 

planning or achieving long term goals. Each approach has strengths and weaknesses and 

the goal is to balance the tradeoffs between the system’s ability to deliberate and its 

ability to respond reactively to unexpected changes in the environment. The three-layer 
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architecture attempts to strike such a balance, delivering the planning ability via a 

deliberator while maintaining robust low-level control via a reactive execution element. 

Despite the use of concurrent execution techniques, implementations of the Saphira 

and 3T architectures are unable to guarantee that their low-level control processes will 

execute at regular intervals. Outwardly, the problem is that the robot can become 

unresponsive while performing time intensive tasks. The root problem is that the 

independent routines are subject to the underlying scheduling approach used by the base 

operating system. The scheduling algorithms used by modern operating systems attempt 

to maximize average performance, which can allow critical routines to be starved by 

computationally heavy tasks. Chapter III covers current research in robot architectures 

that use real-time control facilities to guarantee that routines that ensure safe, dependable 

operation execute at their intended frequency. 
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III.  Concurrency and Real-Time Robot Architectures 

This chapter presents an introduction to concurrent and real-time programming and 

explores the current research efforts in mobile robotics that employ real-time techniques 

to ensure safe operation in dynamic and uncertain environments. Section 3.1 provides 

relevant background on the complexities that are unique to concurrent programming. 

Section 3.2 presents a discussion of scheduling theories and the current development in 

real-time operating systems and programming languages. Current research efforts in 

mobile robotics based on real-time systems is presented in section 3.3. The final section, 

3.5, reiterates the importance of providing a guarantee that critical routines will run at 

specified times and intervals to maintain safety. 

3.1 Concurrent Programming 
To maintain the responsiveness of a computer, modern operating systems like 

Windows and UNIX use concurrency to give the appearance that multiple tasks are being 

handled simultaneously. While tasks appear to be running at the same time, they are 

actually taking turns, each process interleaving its incremental progress with the progress 

of the other active processes. Modern operating systems attempt to model parallelism by 

giving processes time slices in which to perform a task before being preempted or forced 

to yield to the next processes that is ready to run. This approach attempts to maximize 

“average” performance [58] and provide the appearance of multitasking. In some cases, 

the overall performance can appear to be quite poor, because the scheduling algorithm 

gives no assurance about when a process will be allowed to run or that the highest 

priority task will always be active [54]. 

Historically, the term process was introduced to describe the sequence of actions 

performed by the execution of a sequence of instructions. Thus a concurrent process is 

one that can be performed independent of (and possibly at the same time as) another 

process. Through the use of protected memory space and context switching, operating 

systems can run multiple independent processes concurrently by interleaving their time 

slices. More recently, processes have become known as programs, because modern 
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operating systems allow the sub-processes created in the same program (or parent 

process) to have unrestricted access to the program’s memory space; these concurrent 

processes within a program are known as threads. Operating systems that support 

multithreading have an ability to interleave the execution of active threads by giving each 

one its own time slice to run in. 

Since threads operate within the shared memory space of a program, they are 

typically required to synchronize and coordinate at critical junctions to achieve their 

goals and maintain the program’s coherent operation. If not implemented properly, 

concurrent programs introduce the potential for new problems that do not exist in their 

sequential counterparts [54]. Some typical error conditions are deadlock, interference, 

and starvation. Deadlock refers to a condition where two or more processes are each 

waiting for another to release a resource. Interference may occur when two or more 

concurrent activities attempt to update the same object, resulting in a corruption of the 

data. Starvation occurs when one or more concurrent activities are perpetually denied 

resources required to finish a task. 

The ability of a thread to maintain a coherent state is typically indicated by the level 

of thread safety [9] that it supports. Bloch suggests the following levels: Immutable 

instances of a class are constants and cannot be changed, and thus there are no thread 

safety issues. Thread-safe instances of a class are mutable but handle all synchronization 

internally and can be used safely in a concurrent environment. Conditionally thread-safe 

instances of a class have some methods that are thread-safe or have methods that must be 

called in sequence. Thread-compatible instances of a class provide no internal 

synchronization and locking, but can be used safely in concurrent environments if the 

calling process provides the appropriate locks. Thread-hostile instances of a class are 

unsafe to use in concurrent applications [54]. 

Thread-safe implementations are able to maintain coherent operation in concurrent 

programs by employing standard communication and synchronization patterns. Some 

typical ones are: semaphores, signals, events, reader/writer buffers, blackboards, 

broadcasts, and barriers. Semaphores can be either blocking or not-blocking, but are 

essentially counters that are used to control the number of processes accessing a limited 
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resource. Threads acquire and release the associated resource through the semaphore. 

Signals, whether persistent or transient, are used to communicate between threads as a 

means of synchronizing their progress. Persistent signals remain set until the waiting 

thread receives it. Transient signals are pulses that are used to release one or more 

waiting threads. Events are essentially signals that have a specific values, a process 

waiting on a specific event will unblock when the event occurs. Buffers are typically used 

to pass messages between threads, and once read the data is destroyed. If the data is to be 

retained, then the blackboard abstraction is more appropriate. Broadcasts are essentially 

pulses that pass data to the recipients. Finally, barriers are used to synchronize the 

execution of threads by block their execution as they arrive at the barrier and then 

releasing them all once all the registered threads have arrived at the barrier [50, 54]. 

Despite the complexity introduced over sequential programming, concurrent 

programming allows programs to remain responsive to user input while tasks are 

completed as background processes and in most cases provide the appearance of 

parallelism. Currently, modern operating systems and programming languages allow 

threads to be interrupted synchronously. While this approach simplifies the control and 

synchronization requirements, it is inherently weak because it does not provide a 

guarantee that the interrupted thread will yield in a known period of time. For real-time 

applications, the ability to asynchronously preempt a running process with bounded 

latency is a critical element that makes real-time systems predictably responsive, even in 

unpredictable environments. 

3.2 Real-Time Systems 
Real-time systems are typically used to control critical systems where an untimely 

response to an event in the real-world is either too late or incorrect and risks the safety of 

the public, personnel, or the system itself. The software must, therefore, be engineered to 

the highest standard, and programs must attempt to tolerate faults and continue to 

operate, even at degraded levels [54]. 

A system is said to be real-time if the correctness of an operation depends not only 

upon its logical correctness, but also upon the time at which it is performed. Such 

systems provide control facilities that enable a programmer to specify times at which 
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actions are to be performed or times at which actions are to be completed, as well as the 

ability to respond or dynamically reschedule tasks when a timing requirement cannot be 

met. It is also common to distinguish between hard and soft real-time systems. Hard real-

time systems typically have a strict schedule in which processes must complete their task, 

or forfeit the integrity of the system. This approach is typically implemented as an 

embedded system and guarantees response times less than the maximum stated latency 

(normally between 10 and 100 µs). Approaches that can tolerate some lateness are 

referred to as soft real-time and are typically responsive but can not assert their maximum 

latency. The violation of timing constraints in soft real-time systems results in degraded 

quality, but does not necessarily lead to a failure state. In the context of mobile robotics, a 

system that takes a little longer to make a plan is more acceptable than one that strikes a 

wall or a researcher because it is too busy making plans. 

Although many efforts exist to develop general purpose real-time operating 

systems, the advent of the POSIX-1003.1b real-time extensions [32], provides UNIX a 

chance to become the real-time processing platform of choice. Thus, we explore the two 

main efforts to develop Linux into an operating system capable of meeting hard real-time 

constraints: RTLinux [58] and RTAI (Real-Time Application Interface) [57]. On a 

separate front, the Java programming language, which currently provides exceptional 

support for concurrent programming, is being extended to support the development of 

real-time applications. This effort, sparked by guiding principles set forth by the U.S. 

National Institute of Standards and Technology (NIST), is known as the Real-Time 

Specification for Java (RTSJ) [10] and promises to provide solid support for real-time 

applications programming. 

3.2.1 Real-Time Linux 
The Real-Time Linux (or RTLinux) development uses an approach known as 

preemption improvement to shorten interrupt servicing latencies down to levels that 

support real-time applications [6]. In the preemption improvement approach, the Linux 

kernel is modified to reduce the length of the longest section of non-preemptible code in 

order to minimize the latency of interrupts or real-time task scheduling in the system. 

This is critical because the amount of time spent in the longest section of non-preemptible 
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code is the shortest scheduling latency that can be guaranteed for a real-time application 

whose operation relies on specified latency limits to ensure correctness [7]. 

Use of the preemption improvement approach creates several drawbacks. The first 

is that any guarantee of maximum latency is effectively unverifiable. Although the kernel 

is generally more preemptible, such a guarantee is limited unless every possible code path 

in the kernel is examined. Another limitation is that future maintenance is difficult. The 

significant deviation that RTLinux takes from the main line of Linux development 

establishes a new operating system that is unsupportable by the main Linux community. 

Finally, the preemption improvement approach requires substantial modifications 

throughout the Linux kernel, which poses the risk of introducing new bugs [8]. 

3.2.2 Real-Time Application Interface (RTAI) 
In contrast to RTLinux, the RTAI development effort uses an approach known as 

interrupt abstraction to reduce interrupt latency for real-time applications. Instead of 

making incremental changes to the kernel to improve its preemptibility, RTAI adds a 

small real-time kernel below the standard Linux kernel and treats the Linux kernel as a 

low priority real-time task [45]. The Linux kernel runs as RTAI’s idle process, only 

running when there are no real-time tasks to run and the kernel is preempted whenever a 

real-time task needs to run [6, 58]. Because a separate hardware handling layer intercepts 

and manages the actual hardware interrupts, any missed hardware inputs are simulated, 

making the Linux kernel mostly unaware that it is being subverted by RTAI [8]. 

The interrupt abstraction approach leaves the Linux kernel largely untouched, 

avoiding many of the software maintenance problems faced by RT-Linux. Additionally, 

the RTAI scheduler and hardware abstraction layer total 64 kilobytes, which is small 

enough that it no longer makes verification of the latency guarantees prohibitive [8]. The 

main draw back to RTAI is that real-time processes are implemented as standalone kernel 

processes. As of release 1.02a, RTAI supports inter-process communication methods and 

a symmetrical API that allows real-time tasks to be created from inside the Linux user 

space, allowing an application to operate using a mixture of real-time and non-real-time 

tasks [45]. 
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3.3 Process Scheduling 
Real-time systems differ from typical computational systems in that they must be 

able to interact with their environment in a timely and predictable manner, the days when 

real-time simply meant fast are long gone [54]. The need to make some processes “more 

important” than others is becoming common in applications where responsiveness is 

important and milliseconds of delay count. Consider a time critical process A, when A is 

able to run, it should run in place of any other process. This seems intuitive, but the 

scheduling algorithms used by modern operating systems do not guarantee when A will 

become the running process, only that it will be the next process to run. 

The two scheduling algorithms defined for real-time operating systems are round-

robin and FIFO (first in first out). Both schedulers allow a higher priority process to 

preempt currently running process at any time. The primary difference between the two 

real-time schedulers is that FIFO allows a process to run indefinitely while round-robin 

forces a process to yield and allow another process to run. The schedulers used in modern 

operating systems attempt to give all processes a “fair share” of the processor and do not 

observe any specific time constraints. 

An example designed to demonstrate the difficulties in the scheduling approaches is 

used to describe the differences in the way that real-time systems and modern operating 

systems will schedule an identical processes load. The test load consists of three 

processes, defined in Table 3.1, where: process A is a task that occurs at frequent 

intervals; process B occurs less frequently but takes longer to complete; while process C 

is considerably complex but runs infrequently. 

Table 3.1: Process Scheduling Example 

Periodic Execution Process Time Frequency
Execution 
Time/Sec 

A 3 ms 20 ms 150 ms
B 25 ms 100 ms 250 ms
C 100 ms 1000 ms 100 ms
 Total 500 ms
 

Assuming that the priority of A is greater than B and the priority of B is greater than 

C, Figure 3.1a shows the execution pattern of a real-time system capable of preempting 

lower priority processes within 10 µs. The use of a real-time scheduler provides an 
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asynchronous ability to interrupt the execution of a lower priority process, thus achieving 

the periodic execution frequencies specified in Table 3.1. In Figure 3.1a, process A is 

able to execute in 20 ms intervals by preempting the execution of process B. Likewise, 

the long (100 ms) execution of process C is interrupted multiple times to allow both A 

and B to run at their designated intervals. 

 
Figure 3.1: Process scheduling timeline for (A) Real-time system with 10 µs preemption; 
(B) Modern operating system with priority threading scheduling and 100 ms time slices. 

While modern operating systems support prioritized thread scheduling, they do not 

provide fine grain preemption of running processes beyond the default time slice 

(typically set as 100 ms). A higher priority process that becomes ready to run must either 

wait for the running process to either yield voluntarily or wait for the operating system to 

preempt the running process at the end of its time slice. Using the process specifications 

in Table 3.1, the execution pattern that a modern multithreaded operating system is likely 

to produce is shown in Figure 3.1b. 

Figure 3.1 shows the failure of this scheduling process to meet the periodic 

execution requirements. Initially, all three processes begin in a ready to run state. The 

scheduler selects process A to run followed by process B. During the execution of B, A 

renters a ready to run state and because of its higher priority, A is selected to run ahead of 

C and is 8 ms behind schedule. When A completes its second execution C is the only 

process ready to run and enters execution. Because the computation time required by C is 
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equal to the operating system’s default time slice, it executes uninterrupted for 100 ms 

before yielding the processor. When C completes, process A is next in line to run and has 

missed four execution periods and is 83 ms behind schedule. Similarly, the second 

execution of B is 31 ms behind schedule. This pattern of disruption repeats at every 

second due to the periodic execution of C. 

This example demonstrates the limits of a priority thread scheduler to provide 

accurate periodic task execution under heavy computational loads. The following section 

discusses three robot architectures that use real-time implementations to improve the 

responsiveness of time-critical routines over long-running deliberative tasks. 

3.4 Real-Time Robot Architectures 
The three-layer architecture presents a system that is both deliberative and reactive. 

However, mobile robots exist in the real world where time and events occur continuously 

and not in discrete time steps. Despite the concurrent execution of each layer, there are no 

real-time guarantees that the reactive elements providing for the safe operation of the 

robot will execute as scheduled. The following sub-sections discuss current robot 

architectures that use real-time approaches to enhance responsiveness and ensure safety. 

3.4.1 OpenR 
Developed as an open architecture (or multi-vendor system) for autonomous robot 

systems, OpenR is based on Aperios [59], an object-oriented, distributed operating 

system which allows physical and software components to be defined uniformly as 

objects. Because everything is referenced as an object, OpenR advocates for a common 

interface for various components like sensors and actuators. Expanding on this approach, 

the design is a layered model consisting of: a hardware adaptation layer (HAL), a system 

service layer (SSL), and an application layer (APL) [24]. This approach is intended to 

allow developers to use well defined interfaces and introduce new programs without 

affecting adjacent layers. Its major weakness is that the HAL layer providing designated 

services is not sufficiently modular, and thus is not easily enhanced. Another weakness is 

that OpenR uses message passing to communicate, causing it to suffer long delays that 

result from messages setting off a cascade effect that results in long service periods prior 
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to a task being achieved. Though lauded as a real-time system, this approach fails to 

enforce real-time constraints on process execution and provides no guarantee that a 

higher priority process will be given access in a timely manner. 

3.4.2 Miro 
Miro is a CORBA-based robot programming framework [21] intended to allow for 

the development of reliable and safe robotic software on heterogeneous computer 

networks and supports the use of several programming languages. The decision to use 

CORBA supports a common interface wrapper that allows for distributed processing and 

platform independent code reuse. However the overhead that using CORBA wrappers 

brings is not conducive to maintaining the responsiveness required by low-level robot 

control elements. Although the B21 robot implementation was able to accept and 

schedule tasks from multiple remote workstations it is unclear how the internal robot 

control was implemented or how that implementation affects responsiveness of the low-

level control elements.  

3.4.3 SmartSoft and OROCOS 
The goal of the SmartSoft [47] and OROCOS [46] projects is to establish robot 

control frameworks that are both modular and responsive to events in real-time. The 

central approach to responsiveness is based on the observer pattern [25] which allows a 

collection of interested components to be immediately notified of an external event. 

While this approach achieves good results overall, it does not limit the length of the code 

path triggered by an event, and subsequently cannot guarantee that the system’s will 

remain predictably responsive. 

3.4.4 YARA 
The YARA architecture [18], which stands for “yet another robot architecture,” is 

unique in that it uses dynamic priority assignment of its activity threads to achieve a 

responsive basis of control in a changing environment. To improve the dependability of 

the system and ensure a fast response to environment changes, the priority of each thread 

of control is tuned to achieve a better coexistence of reactive and deliberative 

components in the same platform. By adjusting the priority of the activity threads using 
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an earliest deadline first approach, the soft real-time process scheduler available with 

Linux versions 2.6 or later gives the next time slice to the highest priority thread waiting 

to run. This approach demonstrates the ability of a general purpose operating system to 

provide interprocess communication with an average response of 175 µs under optimal 

conditions. The ability of the YARA architecture to remain stable and predictable under 

an increasing computational load is demonstrated by implementing two edge following 

behaviors, one in YARA and another and in SmartSoft [47], a CORBA-based framework 

partially developed in the context of the OROCOS [46] project and capable of producing 

786 µs response times between processes. A major problem exposed by this experiment 

is also that execution failures went undetected because the SmartSoft architecture had no 

internal monitoring mechanism to detect processes that failed to execute as scheduled 

[18]. By dynamically adjusting the priority of the active processes, the improved Linux 

scheduler will run the highest priority process in the next time slice, but no guarantees are 

made about responsiveness that are better than the system’s established ability to preempt 

the running process, see section 3.3 and [1].The YARA paper closes by suggesting that 

hard real-time approaches be explored to improve responsiveness and provide guarantees 

at fine grain timing intervals. 

This thesis expands on the goals of the YARA project by presenting a responsive 

behavior-based controller design that operates as a collection of periodic tasks managed 

by a hard real-time scheduler. The assurance that periodic tasks will execute with 

bounded latency allows the time-critical routines that update and evaluate a shared state 

to be scheduled at independent intervals while maintaining the stability of the system. 

3.5 Summary 
Autonomous vehicles and robot architectures are ultimately intended for use in the 

real-world and therefore must remain responsive to changes in the environment. YARA 

demonstrates this need for responsiveness, suggesting that the ability of low-level control 

routines to execute at predictable periodic intervals contributes to a robot’s safe and 

dependable operation [18]. Despite the ability of modern operating systems to support 

prioritized thread scheduling, these schedulers do not guarantee when the highest priority 

process will become the running process, only that it will be the next process to run. 
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Research into general purpose real-time operating systems allows the developer to 

designate particular threads of execution as real-time processes, effectively bounding the 

responsiveness of low-level control routines and establishing and ability to schedule tasks 

at predictable intervals. 
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IV. Unified Behavior Framework 

This chapter introduces the unified behavior framework (UBF) for reactive control, 

demonstrates how existing reactive execution architectures can be designed using the 

UBF and presents two standard implementation approaches. Section 4.1 presents the 

motivations for establishing a UBF. This is followed by a discussion on the encapsulation 

of behavioral logic and how a robot controller uses a behavior package. The ability to 

construct complex behavior structures from existing behaviors is discussed in Section 

4.3. The roles of the state and action interfaces are thoroughly presented in Section 4.4 

followed by a demonstration of how six well known reactive behavior architectures can 

be represented in the context of the UBF. Sections 4.6 and 4.7 present implementation 

examples for sequential, concurrent and real-time domains. The final section reiterates 

the goals and objectives that the UBF supports. 

4.1 Purpose 
Traditionally, a mobile robot design implements a single behavior architecture, thus 

binding its performance to the strengths and weaknesses of that architecture. This section 

introduces the unified behavior framework which allows a robot to seamlessly change 

between disparate architectures and provides mechanisms that simplify the design, 

development and implementation of reactive control structures. 

While the purpose of the reactive controller in a three-layer architecture is to form a 

responsive basis of reactive-control for a mobile robot, a separation can still be made 

between the controller and the reactive behavior logic. Typically, a robot’s low-level 

controller and its reactive-behavior architecture are developed on an as needed basis, 

customized for the intended application and expected environment. The creation of a 

monolithic control structure necessarily ties the controller’s behavior to the specific 

platform, thwarting reuse. Further, the ability to change or expand the base behavior is 

made difficult because it is developed as an integral part of the controller, making one 

indistinguishable from the other. By making a clear separation between these two pieces, 

as see in Figure 4.1, the controller can use various packages of behavior logic without 
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changing the controller implementation. Additionally, behavior packages are no longer 

tied to specific platform implementations, encouraging reuse. 

 
Figure 4.1: Three-layer architecture with deliberate encapsulation of a controller’s 
behavior logic. 

 
Figure 4.2: Defining an abstract class allows behavior logic to be encapsulated as 
independent and interchangeable objects that conform to a standard interface. 

The UBF uses the strategy pattern [25] to provide the controller with the ability to 

dynamically swap its behavior packages at runtime. An abstract behavior interface is 

presented in Figure 4.2 and used to define a family of related algorithms that can be used 

interchangeably. The controller, knowing how to use a behavior in its abstract form, is 

able to use any of the concrete implementations that belong to the family of behaviors in 

a uniform manner, making them fully interchangeable. This approach frees the low-level 

controller from being bound to any single behavior architecture. In fact it provides the 

ability to seamlessly switch between distinct architectures during execution. This is 

advantageous because it promotes the reuse of existing behaviors and frees the developer 

from being bound to any single behavior architecture. 

While the UBF supports code reuse by capturing behavior logic as interchangeable 

modules, the reuse of subcomponents is also encouraged in the UBF via a mechanism 

modeled on the composite pattern [25]. The composite pattern allows new control 

structures to be formed as arbitrated hierarchies of existing behaviors, with the resulting 

structure being usable as a behavior. The consequence of this is that two or more existing 

behaviors can be combined (regardless of their underlying architecture) to form a new 

behavior structure. 
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The software design mechanisms of the strategy and composite patterns encourage 

a developer to use modular approaches that ease the complexity of designing, testing and 

implementing a collection of reactive behaviors, while providing the ability to form 

larger hierarchies of behaviors. This isolates code complexity to the atomic (or leaf) 

behaviors. The freedom to join existing behaviors as compositions encourages 

experimentation with various structural arrangements of elemental behaviors, arbitration 

components, as well as existing behavior structures. Because the operational logic of 

subcomponents is independently verified, this approach isolates the task of problem 

solving a system’s outward behavior to the structural arrangement of control modules. 

While the UBF does ensure that individual elements are compatible with one another, it 

makes no assertion about the coherence of the resulting control structure. The results in 

section 5.1 demonstrate these concepts as a robot simulation is used to observe the radical 

differences that arise in the external behavior attributes as various arbiters are used on an 

identical set of base behaviors. 

4.2  Encapsulating Behaviors 
To integrate the UBF into a robot controller, a layer of abstraction is required to 

make a clear delineation between the controller and the reactive behaviors that drives it. 

This concept is shown in Figure 4.3, which depicts the control layer as responsible for 

issuing motor commands based on the recommendations of the active behavior 

component. The critical aspect is that the behavior modules do not issue commands to the 

motors, rather they evaluate the shared perceptual space and return a set of recommended 

motor commands, which are then applies to the robot by the controller. The intent is for 

the UBF to capture the behavioral logic of the controller as modules that have a 

consistent interface, and there by provide the ability to seamlessly swap the active 

behaviors at runtime and provide a responsive and flexible basis of control. Figure 4.3 

also expresses that a controller can select its active behavior from a set (or library) of 

behaviors. In some cases, several behaviors are actively evaluating the perceptual space 

and making action recommendations. To avoid contention, individual sub-behaviors have 

no ability to unilaterally enact motor commands on the robot and must make their 

recommendations via a proxy, see section 4.4 for more about the Action interface. 
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Figure 4.3: Strong encapsulation of reactive behaviors allows the controller to change its 
active behavior during execution. 

Drawing a strict boundary around the behavior logic with a well defined interface 

allows individual behaviors to be developed that can be used by the controller without 

impacting its design. Like the reactive action package (RAP) approach developed by 

Firby [22], the ability to change behaviors during execution allows the temporal 

sequencing of specialized behaviors to pursue higher order goals without the reactive 

behaviors requiring information about the plans that they are used to achieve. From an 

implementation perspective, specialized behaviors have limited complexity and are easier 

to design and test over monolithic implementations that attempt to address all possible 

world conditions. Instead, a system that relies on a collection of specialized behaviors 

with a common interface is able to observe the environmental conditions and apply a 

particular behavior when it is most effective [30]. 

Keeping to the fundamental rule that reactive behaviors tightly couple sensing to 

action suggests that an effective interface must allow sensor inputs and motor command 

outputs. Normally behaviors are allowed direct access to the sensor and motor hardware. 

Instead, this is the responsibility of the controller and the behaviors are provided a 

generic sensor interface referred to as the State or Perceptual Space [34] and a generic 

motor interface referred to as an Action. 

Using these guidelines, a standardized behavior interface is established that allows 

an action recommendation to be generated based on the current state. To ensure that all 
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behaviors have this capability and that they can be used interchangeably, the abstract 

behavior class, shown in Figure 4.2, is established to serve as the notional definition of all 

behaviors. Its only requirement is that a genAction method be implemented that accepts 

the state to be evaluated and returns an action recommendation. The creation of a 

concrete behavior that sub-classes the abstract behavior has two distinct advantages over 

standalone implementations. The first is that polymorphism requires the presence of a 

genAction method. The second is that all such behaviors are interchangeable because, 

notionally, they are all behaviors. This is the root concept of the strategy pattern [25]. 

In order to discuss how the controller might employ this construct, assume that fully 

implemented behaviors are available. From the controller’s perspective, a three-step 

process is enacted as a continuous loop that is shown by the sequence diagram [51] in 

Figure 4.4. First, the state is updated to represent the current conditions. Second, the 

behavior is asked to generate a recommended action by invoking the genAction method. 

Finally, the proposed action is given the authority to issue commands directly to the 

motors via the execute method. 

 
Figure 4.4: Sequence diagram of a controller using its behavior. 

In some cases it may be more appropriate to assume that the State is always current 

and relocate this responsibility to an external, asynchronous process that continuously 

maintains the State. 

The encapsulation of behavior logic is intended to allow the controller to use 

disparate behavior-based systems (e.g. Subsumption, action-selection, or utility fusion) as 
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interchangeable elements of a behavior library. Because a significant goal of the UBF is 

to encourage the development of reactive control structures that are reusable, 

interchangeable, and scalable [52], the following subsection continues the discussion 

about how existing behavior modules are used as the building blocks in the development 

of more complex behaviors. 

4.3 Constructing Behaviors 
To support software reuse, the developer requires the ability use existing behavior 

modules “as-is”, without modification, to form a new reactive controller. The UBF 

supports this by allowing behaviors to be joined via an arbitration node. Modeled on the 

composite pattern [25], the arbiter provides the UBF the ability to form hierarchical 

structures of behavior collections. Thus, a developer is free to reuse the functionality of 

an existing behavior and incorporate it as a part of a new structure, regardless of its 

underlying implementation. Now, not only can a controller switch between behavior 

architectures at will, it can also use a behavior that is a composition of disparate 

architectures. 

The final structure of UBF is presented in Figure 4.5. This class diagram [51] 

extends the abstract Behavior class, adding an arbitrated Composite behavior and a Leaf 

behavior. Each composite node is associated with an external Arbiter, which allows each 

joining node in a hierarchy to employ an arbitration technique for the behaviors it groups. 

The introduction of the Leaf behavior is functionally empty, but serves to identify 

the atomic building block behaviors of more complex structures. The term “leaf” stems 

from software structures that are organized hierarchically, as are the terms “tree”, “root”, 

“branch”, etc. which are useful when discussing a UBF behavior structure. 
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Figure 4.5: UML class diagram for the unified behavior framework. 

The composite behavior acts as a joining element, allowing many behaviors to be 

formed into an arbitrated hierarchy. Its functional purpose is to maintain an ordered set of 

behaviors, B = {b1, .. ,bn}, and when asked to generate an action recommendation, it 

builds a corresponding set of proposed actions, A = {a1, .. ,an}, which are collected by 

invoking the genAction method for each member of B. Since the Composite class extends 

the abstract Behavior class, each returns a single Action object. Thus, an arbitration unit 

is used to determine a single action, a′, from the set A. The composite behavior then 

returns a′ as its action recommendation. Because many arbitration techniques exist, the 

UBF does not attempt to embed a fixed approach into the composite behavior, rather it 

encapsulates the arbitration task as an associated arbiter module. This separation of the 

arbiter from the composite behavior allows the arbitration technique to be changed at any 

time by invoking the composite behavior’s setArbiter method. In addition to setArbiter, 

the Composite class has other helper methods to manage the structure of a composite 

behavior. 

Outwardly, the responsibility of an arbiter is to accept the set of actions, A, via the 

evaluate method and return a single action recommendation, a′. Individual arbitration 

algorithms are established by extending the abstract Arbiter class. This approach 

classifies all arbiters as belonging to the same family of arbitration algorithms, making 

them interchangeable. Internally, an arbiter can use each action’s vote value and scale it 
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using an associated weighting to generate the ultimate recommendation, a′. The set of 

weights, W = {w1, .. ,wn}, is a normalized set used to scale the affects of a behavior in 

relation to the other behaviors in the set B. As an example, a vector summation arbiter 

and a utility based arbiter are presented below: 

Vector Summation—a vector summation arbiter scales all the motor command 

recommendations made by the elements in A by the related weights of W. The resulting 

values are summed to form the final action recommendation a′. This approach allows 

values of W to be used as a means of tuning the contributions of individual behaviors to 

achieve the desired global behavior attributes. 

Utility Arbitration—a utility based arbiter is considered winner-take-all selection 

approach, establishing a′ by selecting the action recommendation with the greatest 

utility—where utility is calculated as the product of an action’s vote value scaled by an 

associated weighting.  

4.4 State and Action Interfaces 
A significant objective of the UBF is to create behaviors that are reusable in broader 

domains. The first step to towards reusability is to decouple behavioral logic from 

specific hardware. Like the proxies in Player/Stage [27], the State and Action classes 

provide behaviors with a generic interface for accessing sensor information and enacting 

motor commands. The abstract behavior interface in Figure 4.2 is structured in the spirit 

of reactive behaviors, accepting sensor input via the State and returning an action 

recommendation. Unlike the Player/Stage proxies that allow programs to query sensor 

values and submit motor commands, the State is strictly a shared information space while 

Actions are used to communicate a behavior’s recommended motor commands back up 

the hierarchy without acting directly on the robot.  

4.4.1 The State Interface 
The State is intended to be a shared information space similar to the Local 

Perceptual Space (LPS) used in Saphira [34]. The state is a multifaceted representation of 

the current environment, including: collections of decoupled sensor data, a fused sensor 

picture, positional information, goals, and so forth. Because the structure of the UBF 
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allows many behaviors to make action recommendations by independently evaluating the 

current state, behaviors are restricted from making changes to the state. The reason for 

this is that after proposing an action, behaviors never know if their recommendations are 

enacted, changed or ignored at higher levels of the hierarchy. 

As a central component of the system, the State is expected to be in high demand, 

and thus it must remain a thread-safe [9] data repository that is free from logical 

calculations, using getter/setter methods to provide efficient access. While individual 

behaviors typically find a small number of state attributes relevant, the variety of 

attributes required by the population of behaviors is large. Additionally, the shared state 

quickly becomes a monolithic perceptual space when additional requirements are added 

to support routines for maintaining the state or performing activities like goal planning, 

mapping, navigation, etc. 

4.4.2 The Action Interface 
The action class is a motor command interface that allows behaviors to propose sets 

of motor commands and indicate their current level of confidence. Contention of the 

motor commands is avoided by withholding access to the robot until the active behavior 

returns a single action to the controller. This approach requires that behaviors evaluate 

the shared State and propose motor commands via an intermediate action object. An 

action object consists of three distinct pieces: the set of motor commands, the vote field, 

and the platform specific motor control interface. 

The main portion of the action interface is the set of motor commands. As an 

example, an action object is introduced in Figure 4.6 that supports commands for velocity 

and turn rate. In general, the set of motor commands for a particular domain supports 

motor commands for each degree of freedom. The external interface consists of getters 

and setters for each motor command and an additional getter which signals if a motor 

command has been specified. Out of bound values were initially used to indicate an unset 

motor command, however, the addition of an internal set/unset flag is less ambiguous. 

When a setter method is invoked, the associated set/unset flag is changed to set. This 

capability is useful for arbiters that blend actions.  
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Figure 4.6: The public interface of an Action class that supports velocity and turn rate.  

In addition to the set of motor commands, the action object carries a vote field 

which is set to indicate a behavior’s intention to abstain or contribute to the system. The 

vote value can represent either a gradient value to indicate levels of activation or units of 

utility and as a unary value to indicate a binary yes/no vote. 

The platform specific motor control interface is embedded within the execution 

method to keep behaviors from needing to know how to use the robot that they are being 

used to control. While behaviors can build action recommendations, they cannot 

unilaterally enact those recommendations because they do not hold a reference to the 

robot. This approach avoids contention by ensuring that the recommended set of motor 

commands returned by the controller’s active behavior is the only one enacted on the 

robot. To do this, the controller invokes the execute method, giving the action object the 

authority to act on the robot directly. The action’s execute method simply applies the 

current set of motor commands. The elements in the set of commands marked as set are 

enacted while unset elements are ignored. An example of an execute method that enacts 

velocity and turn rate commands is given by the following pseudocode: 
execute (robot) { 
  if (isVelocitySet) then robot.setSpeed(velocity); 
  if (isTurnRateSet) then robot.setTurn(turnRate); 
} 

4.5 Building Behavior Structures 
To illustrate the mechanisms provided for constructing behaviors, this section 

demonstrates how the UBF is used to represent the typical behavior architectures: 

Subsumption, Motor Schema, Circuit Architecture, Action-Selection, Colony 
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Architecture and Utility Fusion. Each sub-section provides a short summary of the 

architecture and demonstrates an equivalent implementation in the context of the UBF. 

The goal is to demonstrate that each of the architectures can achieve a common interface, 

which allows autonomous robot system developers the flexibility to adapt to the current 

environmental conditions by selecting and using the most appropriate behavior structure. 

4.5.1 Subsumption 
The Subsumption architecture [15, 17], described in section 2.2.1, advocates for a 

layered control system based on task decomposition rather than function, a radically 

different structure from the sense-plan-act approach. Figure 2.1 highlights this 

quintessential paradigm shift. Further, the parallel organization naturally promotes 

concurrent and asynchronous responses to sensor input, where each individual layer 

works to achieve its particular goal. Coordination between layers is achieved when 

complex actions (or higher layers) subsume simpler behaviors, or the low-level behaviors 

inhibit the higher layers. Fundamentally, Subsumption can be viewed as a competitive 

architecture using rule-based encodings and priority-based arbitration based on 

hierarchical priority [4]. 

To establish the Subsumption architecture in the context of the UBF, two 

fundamental intents of Subsumption need to be captured and preserved. The first major 

concept of Subsumption is the use of rule-based behaviors (or layers), and the second is 

the suppression/inhibition mechanism which allows layers to subsume or inhibit the 

outputs of other layers. 

The translation is depicted by Figure 4.7 where the traditional Subsumption 

architecture is shown in (A) and a corresponding implementation under the UBF is 

shown in (B). Each task layer is represented directly in the UBF as an individual leaf 

behavior. A behavior builds an action object with the motor commands that it would 

execute if given control and when environmental conditions are suitable, it sets the vote 

field to indicate a desire to be considered for selection. The original suppression 

mechanism used for coordination exists as a simple priority arbiter associated with a 

composite node that groups the leaf behaviors together. By using the priority arbiter as 

the merging mechanism, a composite behavior that models Subsumption is formed, 
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where the action recommendation of the highest priority behavior that did not abstain is 

selected and returned by the composite node. 

 
Figure 4.7: Equivalent implementations of Subsumption (A) Behavioral layers arbitrated 
via a suppression network; (B) A behavior hierarchy using a priority arbiter. 

The use of a hierarchical structure to encapsulate each behavior layer preserves 

Brooks’ original intention to be able to implement, test, and debug each layer 

independently. Additionally, because the behaviors in the hierarchy are independent, they 

are well suited for concurrent and asynchronous execution. 

In the original Subsumption design, communication is allowed between layers, 

allowing feedback loops to exist. This feedback mechanism has received criticism 

because upper layers interfere with lower ones, which keeps each layer’s design from 

being independent, and prevents the ability to test and debug layers independently [4]. 

Since the independence of behavioral layers is fundamental to the concept of 

Subsumption and the structure of the UBF, feedback loops are not represented. 

4.5.2 Motor Schema 
The motor schema architecture [2], described in section 2.2.2, is a cooperative 

control approach which allows for the simultaneous pursuit of multiple goals. Under this 

architecture, behavioral primitives are captured as vector fields that support specific 

perception tasks (e.g. obstacle avoid, move-to-goal, stay-on-path, etc.) which are 

arbitrated as a vector summation and normalization of a continuous potential field. This 

approach is useful in navigation tasks where a path to a goal must be discovered and 

obstacles exit on the direct path to the goal. 
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To enact the motor schema architecture in the context of the UBF the two 

fundamental aspects need to be captured and preserved. The first is the motor schema 

architecture’s use of perception schemas to capture the governing motion effects around 

goals, obstacles, wall, etc. and the second is the use of vector summation and 

normalization as a means of coordinating motor commands. 

The transformation is depicted in Figure 4.8 where the traditional motor schema 

architecture is shown as (A) and the corresponding implementation under the UBF is 

shown as (B). Since perception schemas are already modular and independent of one 

another, each one is represented as a leaf behavior that returns its action recommendation. 

Because the resultant vector field is normalized, each schema can set the vote field of its 

action if an event that attracts or repels the robot is detected, otherwise it abstains. The 

original summation and normalization mechanism used for coordination is captured 

directly as an arbiter that generates a fused command response. By grouping the schemas 

together under a composite node that uses a command fusion arbiter the motor schema 

architecture is effectively implemented within the context of the UBF. 

 
Figure 4.8: Equivalent implementations Motor Schema (A) Independent motor schemas 
coordinated via summation and normalization; (B) A behavior hierarchy using a 
command fusion arbiter. 

In the original implementation of the motor schema architecture, there are 

mechanisms that allow the effect of individual schemas to be weighted as a means of 

tuning the global behavior. When implemented under the UBF, this is achievable by 

weighting the affects of the associated behaviors within the arbiter. Consider a simple 

schema pair where goals attract and obstacles repel. By increasing the weights associated 
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with the obstacle-avoid schema, the robot will swing wide of obstructions and may 

navigate around cluster of obstacles. In contrast, by increasing the weights associated 

with the goal-seeking schema, the robot may approach obstacles more closely or try to 

weave between groups of small obstacles. By making adjustments to the weights within 

an arbiter, the individual schema remains generic and reusable. This is significant 

because it allows distinct branches of control to use the same schema with different 

affects in each branch. 

Additionally, this implementation maintains the key strengths of Arkin’s original 

motor schema architecture. The use of modular perception schemas supports parallel and 

distributed computation, runtime flexibility and delivers reusable components that are 

stored and called from behavior libraries [4]. The motor schema representation described 

above maintains all of these qualities. 

4.5.3 Circuit Architecture 
The circuit architecture [33], described in section 2.2.3, is an abstraction approach 

that groups reactive behaviors and logical formalisms into arbitrated collections. Because 

arbitration occurs at each level of abstraction, developers can build hybridized bundles of 

unlike approaches into mediated hierarchies that are combinations of reactive approaches, 

logical formalisms, and situated automata [4]. 

To enact the circuit architecture in the context of the UBF, two fundamental aspects 

need to be captured and preserved. The first is the ability to create bundles of either 

reactive behaviors or logical formalisms, and the second is its use of hierarchical 

mediation. The key components of this architecture translate directly into an 

implementation using the UBF, since leaf behaviors can be implemented as either a 

reactive behavior or as a logical formalism. Additionally, composite behaviors are 

mediated hierarchies since each has an associate arbiter. The ability for each composite 

behavior junction to use a different arbitration technique allows the leaf implementations 

to be arranged into synonymous hierarchical structures. 

The designers original motivations were to allow for modularity and incremental 

development, responsiveness via tight coupling of sensing to action, and robust designs 

that could perform despite unexpected environments or hardware failure. Due to the 
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similar design structure and the low overhead of using the UBF components, the original 

design motivations are preserved. 

4.5.4 Action-Selection 
Action-selection [37], described in section 2.2.4, uses activation levels as a dynamic 

mechanism of competitive behavior selection. Individual behaviors are grouped as 

competence modules that respond when predefined conditions are detected. These 

requirements can be simple environmental triggers, sequential observations, the existence 

of higher level goals, previous or potential success, etc. When a module’s preconditions 

are satisfied, an associated action sequence is initiated at a given activation level. 

Activation values can be instantaneously reported while the trigger condition is present, 

can persist for a set period of time or can have various decay rates. Action coordination is 

achieved by selecting the competence module that currently has the highest activation 

level. Because there is no predefined layering or order of execution when used in 

dynamic environments, this gives the global behavior a greater emergent quality. By 

basing priority on events in the environment a robot can suddenly and deliberately 

respond to unique conditions or changes in the environment. 

To implement the action-selection architecture in the context of the UBF the two 

fundamental aspects are captured. The first is the organization of response rules into 

competence modules and the second is its use of activation levels to coordinate action 

selection. 

The modularity and independence of individual competence modules allows them 

to be implemented directly as individual leaf behaviors. Action-selection’s use of 

competing activation signals has no direct equivalent under the UBF. To establish an 

equivalent ability, the activation level is embedded in the action recommendation using 

the behavior’s vote field to indicate its current activation level. The arbitration scheme 

used by action-selection is represented in the UBF as a highest activation arbiter 

associated with the composite behavior that groups related competence modules together. 

Being a winner-take-all approach, the arbiter evaluates the vote value for each action 

recommendation and returns the action with the highest value. This approach lends itself 

to a hierarchical structure of competence modules that can be several layers deep. 
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4.5.5 Colony Architecture 
The Colony architecture [20], described in section 2.2.5, is a direct descendant of 

Subsumption, allowing higher layers to suppress lower layers but eliminates the ability of 

lower layers to inhibit higher ones. As a result of enacting the suppression only approach, 

the colony architecture breaks away from the total ordering of layers found in 

Subsumption and permits hierarchical arrangements of behavioral priorities [4]. 

This architecture is naturally represented in the context of the UBF, specifically the 

priority based hierarchies. By capturing the logical control layers as leaf behaviors, 

functional branches of control are then formed via composite nodes using highest priority 

arbitration. Figure 4.9 depicts a Colony architecture design, grouping the shooting and 

target tracking behaviors as a separate control structure. A traditional suppression 

network is shown in (A) and an equivalent representation using the UBF structure is 

shown in (B). 

 
Figure 4.9: Equivalent implementations of the Colony Architecture (A) Priority based 
hierarchy via a suppression network; (B) A highest priority control structure via the UBF. 

4.5.6 Utility Fusion 
The utility fusion architecture [44], described in section 2.2.6, is an expansion of 

the DAMN architecture [43] which distributes action selection via utility instead of 

priority-based or command-fusion arbitration approaches. Under utility fusion an arbiter 

collects utility votes for proposed actions from the associated evaluation behaviors. Each 

behavior uses its own criteria to independently assess the utility of a future state that 

results from taking a given action. The action that collects the highest overall utility is 
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enacted by the arbiter. This approach provides the arbiter with much richer evaluation 

information because actions are selected by how they best satisfy the system’s overall 

goals, or how the action best meets the goals of all of the behaviors. For example, if 

several behaviors assign a modest utility to one action while only one behavior assigns a 

high utility value to a second action, the utility based arbiter will select the action which 

accumulated the largest total utility. In most cases the first action will be selected because 

the overall utility from several moderate votes is greater than a high utility vote from a 

single behavior. This is an appropriate assessment because the first action simultaneously 

meets more of the system’s overall goals. 

Under the utility fusion architecture, Rosenblatt intends that behaviors evaluate 

candidate future states so that they do not need to know the system kinematics or the 

specific motor commands to achieve the proposed state [44]. This modular approach 

binds the abilities of behaviors to the detection of favorable/unfavorable conditions 

within the environment and divorces them from implementation details. The benefit of 

this approach is that behaviors become modular and reusable across systems that employ 

the utility fusion architecture. 

To capture the DAMN and utility fusion architectures under the UBF, the original 

aspects and intent need to be captured and preserved. This is a difficult problem because 

sub-behaviors are being asked to evaluate projected states rather than the canonical 

shared perceptual space. While the evaluation behaviors can be represented directly as 

leaf behaviors that indicate their utility assessment using the vote field embedded in the 

action object returned by the behavior (any proposed action values are ignored), some 

mechanism that understands the kinematics of the robot must be implemented such that it 

can generate predictive state representations for the leaf behaviors to assess. This 

approach is quite different than the other architectures because the behaviors are 

evaluating future states and not the canonical shared perceptual space. 

This central predictive mechanism would hold a discrete set of actions and the 

ability to generate predictive state representations for each of those actions. The 

predictive states are then given as input to the evaluation behaviors. Consider an 

architecture that supports six actions (strong-left, weak-left, straight, weak-right, strong-
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right, and stop) and uses five evaluation behaviors to assess the utility of a proposed 

action. The predictive mechanism must generate the six future states that would result 

from the execution of each action. The utility of each future state is assessed as a sum of 

the utilities returned by the five evaluation behaviors and is embedded into its associated 

action using the vote field. The enacted action is selected using a simple highest-utility 

arbiter that evaluates the vote values for each element in the action set. 

The unique structure of this predictive element gives unprecedented responsibility 

to the joining component; it must understand the kinematics of the implemented system 

and be able to model the consequences of its actions on the environment. The best 

representation of this element in the UBF results in extending the existing composite 

behavior and expanding the genAction method to perform the predictive modeling and 

utility assessments for each member of the action set. 

Rosenblatt suggests that this predictive approach can be expanded to make utility 

assessments for chains of action steps. While the implementation approach above also 

expands to support this predictive capability, the effects of additional deliberative 

computation must be considered in order to avoid adversely affecting the responsiveness 

of the robot. 

 
Figure 4.10: Equivalent implementations of Utility Fusion (A) Evaluation behaviors 
assess utility; (B) Behavior hierarchy using a predictive unit and a highest-utility arbiter. 

4.6 Sequential Implementation 
The concept of the UBF is to guide the development of a collection of primitive 

behaviors that can be used interchangeably and/or be composed with other behaviors in 

the collection to form complex behaviors. Up to this point, only the interaction of the 
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classes in the framework has been discussed because the UBF is intended to ensure the 

modularity of behaviors and not to specify their implementation. Developers, however, 

do need to consider the details of implementation to ensure that the performance needs of 

the system are being met. 

This section presents the most direct method for implementing behaviors in the 

UBF. The use of sequential programming, which embeds all of the behavioral logic 

within the genAction method, makes the flow of execution though the UBF easy to 

understand. An alternative implementation for concurrent and real-time systems is 

discussed in the next section. Because the focus of the UBF is not to specify 

implementation, developers are not bound to one approach. A heterogeneous mix of these 

approaches can be used to compose a behavior structure as long as it also meet the 

system’s performance requirements. 

The concept of the sequential approach is to evaluate the current state and generate 

an action recommendation when the genAction method is invoked, referred to as on 

invocation. This is the simplest and most direct approach for implementing a primitive 

behavior and is effective for simple or light-weight algorithms in domains with discrete 

time steps. The following pseudocode provides an example of its implementation 

structure: 
genAction(state) returns Action { 
  // Evaluation Operation... 
  return action; 
} 

The on invocation approach presents an immediate drawback because there is no 

safe guard for detecting and avoiding repetitive work. When considered in the context of 

the UBF, it is likely that a behavior will be used as a repetitive element within a behavior 

structure, causing it to evaluate the same state and generate the same action 

recommendation on each invocation. 

To alleviate the burden of repetitive computations the last action recommendation 

and the associated time stamp of the state are kept by the behavior. Within the genAction 

method a conditional statement is added to check the state’s current time stamp. If the 

check indicates that this state has already been evaluated, then the stored action is 
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returned, bypassing the evaluation algorithm. This approach is useful for reducing the 

computational requirements of a behavior structure in turn based environments where 

evaluations are made in discrete time steps. The pseudocode below expands on the 

previous implementation, adding the conditional check: 
genAction(state) returns Action { 
  if (state.getTime == lastTime) return action; 
  else 
  { 
    lastTime <= state.getTime; 
    // Evaluation Operation... 
    // 
    return action; 
  } 
} 

The on invocation approach is useful because of its simplicity, making the 

implementation of stable behaviors easy to understand. However, this structure is best 

suited for turn-based domains that have discrete time steps. For continuous time domains, 

this approach can put a computational burden on the system because the entire hierarchy 

must be evaluated. The next section discusses a design for leaf behaviors that is usable 

for concurrent and real-time execution. 

4.7 Concurrent and Real-Time Implementation 
As demonstrated by YARA [18], the ability of low-level control behaviors to 

reliably run at periodic intervals is crucial to the safety and reliability of robots operating 

in continuous domains that are both dynamic and unpredictable. The sequential 

implementation of the UBF presented above, while straightforward, necessarily ties the 

rate at which a controller can request an action recommendation to the computational 

time of the hierarchy. 

This section presents an asynchronous implementation of the UBF intended to be 

employed within robot architectures that leverage concurrent and real-time scheduling. 

The fundamental change over the sequential approach is that the computational logic of 

the leaf behaviors is moved out of the genAction method and into a separate thread of 

execution that is run periodically via a scheduler. With each leaf behavior scheduled to 

evaluate the environment at appropriate periodic intervals, the current evaluation result 
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can be obtained repeatedly via the genAction method. This approach treats the set of base 

behaviors as a pool of independent worker threads that execute as concurrent and 

potentially simultaneous processes. 

This change does not affect how a controller requests an action recommendation 

from its active behavior. In fact, this implementation makes the call to genAction quite 

fast because it need only traverse the behavior hierarchy to collect and arbitrate the 

current action recommendations down to a single recommendation. Additionally, this 

approach divorces the rate at which a controller requests action recommendations from 

the rate at which each leaf behavior evaluates the environment. 

Using this implementation approach, the structure of a leaf behavior has two major 

parts: the genAction method and the run method. The genAction method is a requirement 

of the abstract behavior class and provides asynchronous access to the behavior’s current 

action recommendation. The run method, called periodically by a scheduling process, 

evaluates the current environment and updates the current action recommendation. 

The pseudocode below provides a structural example for a schedulable behavior: 
genAction(state) returns Action { 
  return action; 
} 
 
run(state) { 
  // Evaluation Operation... 
  // 
  write.lock; // Locks are required to protect 
  action <= current; // against interference caused by 
  write.unlock; // concurrent access of genAction. 
} 

An asynchronous implementation naturally raises the question, “How frequently 

should a controller poll its active behavior?” Unfortunately, there is no best answer, but 

all solutions must consider the level of uncertainty in the current environment. One 

approach is to request an action recommendation at twice the rate of the fastest periodic 

environment evaluation. This solution is based on the principle of the Nyquist sampling 

rate [42] and assumes that the periodic schedules of the base behaviors are adjusted at 

runtime to match the environment’s current level of change. In rapidly changing 

environments, this approach allows low-level processes to execute at shorter periodic 
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intervals, increasing the computational time used by reactive control routines. In more 

stable environments, the scheduler can set low-level processes to execute less frequently, 

making computational time available to higher-level planning processes. 

When used with real-time schedulers, this approach can potentially enter a 

condition known as priority inversion. Priority inversion is a problem that can emerge in 

real-time systems that have multiple processes, running at various priorities and are 

attempting to access shared data protected by a blocking semaphore. Priority inversion 

occurs when a low priority process is holding a lock that a higher priority process needs 

to progress. Real-time schedulers are designed to preempt the running processes when a 

higher priority process is ready to run. If the higher priority process never yields while 

waiting for a lock that is held by a preempted process, the lower priority process never 

has the chance to run and release the lock, creating a deadlock condition. The solution is 

to employ priority inheritance, a mechanism provided by many real-time operating 

systems to detect priority inversion. To bypass this deadlock situation, the operating 

system temporarily raises the priority of the lower priority process, so that it may run. 

Once the lock is released, the process reverts to its original priority. 

This implementation of the UBF uses the independence of leaf behaviors to 

establish their evaluation processes as threads of execution that can be scheduled to 

execute at various periodic rates. Such an approach is well suited for applications that use 

a real-time operating system to cope in dynamic and continuous time environments. The 

periodic evaluation approach presented associates the computational requirements of the 

system with the established execution schedule. Regardless of the frequency that the 

controller requests an action recommendation and the number of times that the same leaf 

behavior is used within the active structure, evaluations are only performed once per 

period. The drawback to using this approach is the added complexity of using concurrent 

processes, which can be minimized by using established design approaches. 

4.8 Summary 
The UBF is a structural guide that applies standard software engineering 

approaches to simplify development and testing of reactive behavior modules for 

autonomous robots. At the highest level, it uses a strategy pattern [25] to establish a 
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family of interchangeable behaviors. Additionally, the UBF addresses the need for 

scalability by providing construction tools that allow robust structures to be formed as 

arbitrated hierarchies of small, highly focused components. The use of the composite 

pattern [25] then ensures that the resulting structures are scaleable and belong to the 

established family of behaviors. This approach eases design complexity, allowing atomic 

behaviors to be designed, implemented and tested independently and then joined together 

to produce rich and coherent behaviors. The ease with which components can be formed 

into stable structures encourages reuse and experimentation. 

By hiding the implementation details of individual behaviors behind a common 

interface, each behavior implementation is developed and tested independently, allowing 

independent, and possibly parallel, development teams the freedom to use the behavior 

system that they feel will best achieve their design goals. Additionally, since the scope of 

each behavior is focused, code complexity is reduced which in turn eases testing 

requirements. Once established, any compatible robot controller can use a behavior as an 

interchangeable behavior element. 

The ability of the UBF to present behaviors as interchangeable elements inherently 

supports planning and allows a low-level controller to provide the sequencing processes a 

robust method for altering the controller’s apparent immediate goal. By observing and 

evaluating the shared perceptual space, the sequencer can form the overall behavior of the 

robot by changing the active behavior process [23]. The idea of sequencing a series of 

simple tasks into a chain that yields a higher order goal is based on an approach originally 

presented by the Reactive Action Packages (RAPs) system. Unlike RAPs, the UBF does 

not require low level behaviors to report success/failure because reactive behaviors 

simply act within their current environment (either well or poorly) without knowledge of 

what constitutes success or failure in a given system. For this reason, the entity that has 

knowledge of the system’s higher-order goals (i.e., the sequencer) is expected to monitor 

the progress of the active behavior within the environment to assess success or failure. 

Additionally, the sequencer can adjust the criteria of success/failure on the fly rather than 

relying on assessment logic embedded within a reactive behavior a priory. 
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In the next chapter, the capabilities of the UBF are demonstrated using three case 

studies. The first case study demonstrates how modular designs encourage code reuse, 

rapid prototyping, and experimentation. The second case study applies a genetic program 

to automate the discovery of effective behavior structures for given domain. The final 

case study demonstrates the ability to establish a safe and dependable basis of control by 

implementing a behavior-based controller as a set of real-time tasks that remain 

predictably responsive regardless of the system’s computational load. 
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V. Results 

This chapter demonstrates the capabilities of the unified behavior framework (UBF) 

using three experiments intended highlight individual capabilities of the design. The first 

section demonstrates how arbiter selection affects global behavior. Section 5.2 

demonstrates how a genetic program is employed for the automatic discovery of effective 

behavior structures. The application of the UBF within the context of a real-time 

operating system is demonstrated in section 5.3. The final section reiterates the results of 

the three experiments as they apply to the concepts of the UBF overall. 

5.1 Case Study I: Arbiter and Structural Variation 
The burden of developing and testing behavior-based controllers is in the level of 

details required to implement a robust and coherent basis of control for a given robot in a 

given domain. Designs that blend the hardware interface, kinematics, and behavioral 

logic become monolithic controllers that are not reusable. The unified behavior 

framework (UBF) advocates that low-level controllers encapsulate their behavioral logic 

and provide generic sensor and motor interfaces to the system. This design allows 

controllers to dynamically reconfigure their behaviors without changing the design of the 

controller. The modular design of the UBF supports the development of highly focused 

behaviors and arbiters that are subsequently combined into structures that outwardly 

display a robust behavior attributes. 

This experiment uses an adaptation of the Robocode robot battle environment [40] 

to demonstrate how the modular design of the UBF supports reuse and composition, 

allowing a variety of dynamic behavior structures to be constructed and evaluated from a 

set of basic behavior/arbiter elements. This experiment also enacts representations of well 

known behavior architectures in such a way that they conform to the UBF’s abstract 

behavior interface, which makes each one an interchangeable member in a family of 

behaviors. As a byproduct of this demonstration, the importance of selecting an effective 

arbiter is highlighted by the radical changes in the outward attributes of the behavior 

structures as different arbiters are employed for the same behavior structure. 
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The discussion of this experiment is broken into four sub-sections: an explanation 

of the Robocode modification to allow velocity based motor control, a listing of the 

behavior/arbiter components available for this experiment, a description of the behavior 

structures formed from these components, and the observations of the outward behavior 

for each structure along with an assessment of the performance gap that emerges. 

5.1.1 Robocode Adaptation 
Robocode was chosen as a simulation environment because it provides a dynamic, 

environment in which different control architectures are compared by allowing them to 

interact dynamically in battle, see the screen capture in Figure 5.1. However, the current 

application is not useful for experimenting with established robot control architectures, 

because rather than accepting motor commands, commands are discrete requests that set 

a robot to turn left 90 degrees, or travel a set distance and then stop. This motor interface 

is atypical of standard robot motor control mechanisms. For this reason, the motor 

interface of Robocode version 1.0.7 was adapted to allow for a velocity-based approach, 

it now accepts commands that specify the desired velocity and rate of turn for the chassis 

as well as the turn rate for the gun turret and the radar. Once set, these rate based values 

persist until changed. 

 
Figure 5.1: Screen capture from Robocode of a ten-on-ten robot melee. 
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The physical limits of acceleration that restrict a robot from instantaneously 

achieving a new velocity or turn rate are maintained by the new motor interface. For 

example, if a robot is moving in reverse with a velocity of –2 it cannot instantaneously 

change its velocity to +8. A command that sets the robot’s velocity to +8 is accepted, but 

the change is not instantaneously reflected in the robot’s motion. This concept is the same 

for the chassis turn rate, the gun turret turn rate, and the radar turn rate: each has unique 

acceleration parameters and maximum rate values. 

5.1.2 Description of Elemental Components 
Using the UBF interface, five elemental behaviors and six arbitration techniques are 

developed and tested as independent components. The functionality of each component is 

described below and then used to build specific architectures for the comparison in 

Section 5.1.4. The behaviors are: 

Ramming—when another robot (with a lower energy level) is detected, this 

behavior causes our robot to turn towards the other and charge towards it, 

attempting to cause damage by hitting it. 

Shoot—causes our robot to fire on another when the target is less than three degrees 

off bore site and is within range. The power committed to the bullet is reduced 

as a function of the target off bore site angle and as a special case, when the 

target is close the shot is taken at max power regardless of the angle error. 

Scan—causes the radar to oscillate in a twenty degree arc around the bore site of the 

gun. As the gun rotates the active radar scan area tracks with it. 

Target Tracking—has two operating modes. When no target is detected, the default 

mode turns the turret in a clockwise direction. When a target is detected, the 

target tracking behavior causes the gun turret rotation to slow or reverse its 

direction in an attempt to continue tracking the target. This behavior sets the 

turret turn rate to be one-third of the current off bore site angle, as a target’s 

own motion causes the off bore site angle to increase, the turret turn rate 

increases accordingly in an attempt to track the target. 

Wander—is always active, attempting to performs a series of "S" turns across the 

battlefield. When a wall is encountered, the polarity of the velocity is flipped. 



55 

The length of the arc is randomly selected to be between 30 and 120 degrees 

before changing the direction of turn. 

The arbitration techniques developed are: 

Monte Carlo—is a stochastic arbitration technique that uses fitness proportional 

random selection to activate one sub-behavior for a period of time. At the end 

of the period another random selection occurs, activating the chosen sub-

behavior for the current period. 

Highest Priority—is a winner-take-all arbiter that returns the action set of the 

highest priority behavior indicating a desire to act, regardless of vote value. 

The recommendations of lower priority behaviors only execute if higher 

priority behaviors abstain. 

Priority Fusion—is a semi-cooperative arbiter that uses priority based arbitration on 

a per motor command basis. Unlike the highest priority arbiter above, priority 

fusion builds a new action set that allows the unspecified action fields of 

higher priority behaviors to be filled by lower priority action requests. 

Command Fusion—is a cooperative arbitration approach that uses summation and 

normalization of proposed motor commands to derive the resultant set of 

motor commands. The input of all contributing behaviors are used on a per 

motor command basis to form the resultant command vector. 

Highest Activation— is a winner-take-all arbiter that returns the action set with the 

highest vote value. This approach provides a dynamic mechanism for 

competitive selection by allowing behaviors to indicate their urgency for 

activation. Associated behavior weights are used to internally tune global 

performance by scaling the votes of behaviors that either over or under vote. 

The concept of activation levels is synonymous with the concept of utility in 

market based systems. 

Activation Fusion—is a semi-cooperative arbiter that uses a highest activation 

selection approach on a per motor command basis. Unlike highest activation, 

activation fusion builds a new action set, allowing the motor commands left 

unspecified by the behavior with highest level of activation to be set using the 
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recommendations of behaviors with lower activation levels. When used with 

market based systems, this technique is easily referred to as utility fusion, but 

risks confusion with Rosenblatt’s utility fusion [44] behavior architecture. 

5.1.3 Behavior Structures 
The ability of the UBF to easily assemble elemental components into operationally 

sound structures encourages developers to experiment with different structural 

arrangements. This approach isolates the task of trouble shooting a system’s outward 

behavior to the structural arrangement of independent control elements that have been 

previously validated. The experiment in this section primarily demonstrates how 

structural changes affect the global attributes of a behavior. Additionally, it demonstrates 

the profound affect that structure and arbitration have on the overall effectiveness of base 

behaviors. 

To make a quantitative comparison of the relative effectiveness of one behavior 

structure to another, the experimental structures are evaluated using their performance in 

relation to a benchmark that was crafted by an expert to operate coherently within the 

domain. The benchmark’s control architecture is shown in Figure 5.2a, and consists of 

the wander behavior, the ramming behavior, and the track-fire behavior arbitrated by an 

activation fusion arbiter. The observed behavior of the benchmark has two operating 

modes, one that wanders the battlefield attempting to track and shoot opponents and 

another that aggressively charges towards a weaker opponent with guns blazing.  

 
Figure 5.2: (A) The benchmark’s behavior structure; (B) The standard behavior structure, 
each of the six arbitration approaches is evaluated in turn by setting the arbiter field. 
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Figure 5.3: Two representations of a traditional Colony architecture (A) Colony A is a 
hierarchal structure using highest priority arbitration; (B) Colony B is an adaptation of 
the traditional hierarchy that uses priority fusion arbiters to support the activation of the 
sub-behavior requests on a per motor command basis. 

Using the standard behavior structure in Figure 5.2b, each of the elemental arbiters 

can be applied at the composite node to form six distinct behavior structures that each 

have shoot, ram, target tracker, wander and radar scan as their base behaviors. Each 

structure is named for the arbiter in use. In addition to these six standard structures, the 

priority-based hierarchy approach specified by the colony architecture [20], is used to 

demonstrate how hierarchical control structures can be formed using the UBF. Two 

variations of the colony architecture are introduced, each grouping the three shooting 

related behavior elements into a fire control branch. The first structure (called Colony A) 

uses strict priority based arbitration at all levels of the hierarchy and is shown in Figure 

5.3a. The second structure (called Colony B) is identical but uses priority fusion 

arbitration instead, see Figure 5.3b, and shows that the UBF can extend beyond the 

discussed behavior-based architectures. 

5.1.4 Results 
The quantitative measures for each structure’s performance, measured relative to 

the capabilities of the benchmark behavior, are presented by Table 5.1. The rating of each 

member is measured using a series of 250 battles against a robot running the benchmark 
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behavior control architecture. Rankings are the percent difference of the benchmark’s 

score; values above zero indicate superior combat skills while below zero ratings indicate 

an inferior level of performance. A clear performance gap can be seen in Figure 5.4 

where the four fusion-based structures are stratified above the four competitive structures. 

Subjective observations about a behavior’s apparent coherence are also made to aid in the 

discussion of the quantitative results. 

Table 5.1: Performance of behavior structures relative to the benchmark. 

Behavior 
Structure 

Architecture 
Representation 

Rating 
(avg ± stdev) Action Selection 

Colony B – 104% ±12.5% Fusion-Based 
Priority Fusion Circuit Arch 104% ±13.1% Fusion-Based 

Activation Fusion Utility Fusion 104% ±13.6% Fusion-Based 
Command Fusion Motor Schema 99% ±14.6% Fusion-Based 

Benchmark – 0% ±17.6% Fusion-Based 
Highest Activation Action-Selection –19% ±28.5% Competitive 

Highest Priority Subsumption –19% ±29.1% Competitive 
Monte Carlo – –27% ±26.7% Competitive 

Colony A Colony Arch –47% ±30.9% Competitive 
    

 
Figure 5.4: Performance of a standard behavior structure using various arbiters. 

5.1.4.1 Monte Carlo Structure 
The member using the Monte Carlo arbiter randomly gives control to a single sub-

behavior branch for set intervals before randomly selecting another. This structure 

performs poorly against the benchmark, achieving a rating of –27% ±26.7%. Outwardly, 

this behavior structure delivers an incoherent behavior, switching between its elemental 

behaviors. The reason is that several of the base behaviors are intended to be used in 
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combination with each other. The winner-take-all nature of the Monte Carlo arbiter does 

not allow it to switch between complementary behaviors at critical moments, and thus 

does not achieve the larger effect that is intended. For example, the member is able to 

track a target but begins to wander without shooting at the opponent. During the period 

when the shoot behavior is active, the robot fires when an opponent crosses its path but is 

unable to track the target and continue the attack. This arbitration approach is suggested 

for use when the individual sub-behaviors are robust enough to be used as standalone 

behaviors. 

5.1.4.2 Highest Priority Structure 
The member using the highest priority arbiter establishes a layered Subsumption 

architecture, prioritizing its sub-behaviors from highest to lowest: shoot, ram, tracker, 

scan then wander. This structure performs poorly against the benchmark, achieving a 

rating of –19% ±29.1%. The outward attributes of the member show its ability to track 

and fire on a target by interleaving priority shoot commands with tracking commands. Its 

weakness is that the third highest priority behavior (tracker) is always active and starves 

its two lowest (wander and scan). Additionally, the winner-take-all approach keeps 

specialized behaviors like ram from capitalizing on the tracking efforts being done by 

other behaviors. In fact, ram effectively disrupts the target tracking task by suppressing it 

to move towards the opponent but does not continue the tracking effort, subsequently 

loosing the target and disrupting its own ability to act. Like Monte Carlo this arbitration 

mechanism is better suited for organizing task specific behaviors that are coherent as 

standalone control structures. 

5.1.4.3 Priority Fusion Structure 
The member using the priority fusion arbiter, still uses the suppression of lower 

priority requests for higher ones, but on a per motor command basis. This difference 

effectively establishes separate circuits of control for each motor command, allowing 

lower priority behaviors to remain active unless overridden by a higher priority process. 

This structure performs well against the benchmark, achieving a rating of 104% ±12.5%. 

The outward attributes of the member appear much more robust and natural than the 
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strictly competitive constructs like highest priority. The member regularly switches 

between a charge and a wander roll without disturbing its ability to track and fire on an 

opponent. The rating jump is attributable to the ability of the arbiter to allow independent 

layers to be concurrently active, allowing the global behavior to avoid the starvation 

condition that cripples the highest activation structure.  

5.1.4.4 Command Fusion Structure 
The member using the command fusion arbiter, an approach modeled on the motor 

schema [2] architecture, generates a global action recommendation that is a normalized 

summation of all contributing sub-behaviors. Empirically, this structure performs well 

against the benchmark, achieving a rating of 99% ±14.6. The outward attributes of the 

member are robust and coordinated, allowing combinations of target tracking, shooting 

and movement routines to occur simultaneously. The primary weakness of this design is 

in the resultant motion control, which appears hesitant and shaky. This attribute of its 

behavior is attributable to the conflicting directives that cancel or dampen each other, 

making it a vulnerable target for a time. 

5.1.4.5 Highest Activation Structure 
The member using the highest activation arbiter, an approach modeled on the 

action-selection [37] architecture, implements a winner-takes-all approach that bases 

selection on weighted activation signals. This structure performs poorly against the 

benchmark, achieving a rating of –19% ±28.5%. The outward attributes of this member 

show that it is able to interleave tracking with shooting, but that it starves the scan and 

wander functions because the target tracking behavior maintains a higher activation level 

at all times. This design suffers further from an inability to produce coherent motion 

control. Like the highest priority member, the ramming behavior is enacted when a 

weaker opponent is detected, but lacks of ability to continue its tracking effort and looses 

target to be lost. In addition to thwarting the tracker, the failed charge action causes the 

robot to drive in pointless circles because wander is unable to contribute coherent motion 

control due to starvation. 
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5.1.4.6 Activation Fusion Structure 
The member using the activation fusion arbiter is essentially using the standard 

highest activation approach, but is applying it on a per motor command basis. This allows 

the motor commands left unspecified by the highest voting behavior to be filled using the 

recommendation of behaviors with lower activation levels. This structure performs 

exceptionally well against the benchmark, achieving a rating of 104% ±13.6%. The 

outward attributes of this member show a robust blending of independent behaviors 

acting at critical moments to produce effective emergent behaviors that are not expressly 

provided in code. As an example, this structure effectively couples the ability of the 

ramming function to approach the opponent with the shooting and tracking behaviors 

effectiveness at close range. Alternatively, when the member is weaker than the 

opponent, it continues to track the opponent, but is less aggressive, wandering at a safe 

distance, seemingly waiting to regain the advantage. 

5.1.4.7 Colony Structure A 
This member uses the hierarchical behavior structure shown in Figure 5.3a to 

represent the traditional colony architecture design. It groups the behaviors related to 

shooting into a fire control structure that is alongside the ram and wander movement 

behaviors. This structural arrangement performs poorly against the benchmark, achieving 

a rating of –47% ±30.9%. The outward attributes of this member show that its fire control 

substructure is actively tracking and firing on the opponent from a stationary position. Its 

stationary nature is due to the starvation of the motion behaviors. Since the fire control 

substructure is given the highest priority it must yield, which it never does because it 

contains the always-active target tracker behavior, to allow the motion behaviors to 

execute. Within the fire control structure, the scan behavior experiences starvation as 

well, effectively basing this member’s behavior on two of its five sub-behaviors. The 

stationary attribute of this member is the largest reason for its poor ranking in relation to 

the benchmark. 

5.1.4.8 Colony Structure B 
This member is an adaptation of the colony architecture that uses priority fusion 

arbitration to alleviate the affect of starvation caused by the winner-take-all approaches. 
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As with the Colony architecture A, it groups the shooting behaviors together as a high 

priority fire control structure, but does not starve the motion control elements because the 

resulting action returned by the root of the structure represents the highest priority 

requests for each motor command. This structural performs exceptionally well against the 

benchmark, achieving a rating of 104% ±12.5%. The empirical ranking and the outward 

attributes of this member closely resemble the activation fusion member, showing an 

ability to blend the goals of its base behaviors into coherent actions allow higher order 

tasks like ramming to occur without disrupting on going attempts to track and shoot and 

opponent. 

5.1.5 Discussion 
From the empirical results presented in Table 5.1, the most noticeable grouping is 

that the fusion based arbitration techniques perform better against the benchmark while 

the winner-take-all arbiters perform significantly worse against the benchmark. 

The reason for the performance gap is rooted in the functional capabilities of the 

base behaviors. The behaviors made available for this study are atomic in nature and are 

not intended to be coherent when used alone. Therefore, the arbiters that simulate 

separate control circuits for each motor command allow continuous tasks like target 

tracking to continue, while behaviors that affect motion, like ram and wander, compete to 

provide chassis control. The fusion approach is effective in this experiment, because the 

efforts of target tracking are usable by the shoot and ram behaviors without having to 

reproduce the control logic. 

The two main limitations plaguing the competitive arbitration techniques are 

starvation and disruption, which can both be tied back to the functional abilities of base 

behaviors that they are attempting to support. Starvation occurs when higher priority or 

behaviors with higher activation levels are continuously active and never yield to the 

other capabilities present in the structure, thus limiting the global capabilities of the 

structure. The competitive arbiters uniformly sufferer from disruption because the goals 

being pursued by individual behaviors stop when control is handed over to higher order 

tasks that do not continue the lower order tasks that support them. In the case of ram, 

when the tracking behavior successfully tracks a weaker enemy it overrides the target 
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tracker intending to charge the opponent, but does not continue the tracking effort and 

loses the target. The ram behavior then yields control, resulting in an inability to either 

track or charge the opponent. 

The columns in Table 5.1 that classify an arbiter as competitive or cooperative are 

meant to highlight the split around the need to allow a blending of the behavior 

recommendations. This is not meant to generalize or suggest that cooperative approaches 

are always better than competitive ones. In fact, the command fusion arbiter is the only 

pure cooperative arbiter presented in this study, the others are simply a fine grain 

implementation of competitive approaches on a per motor command basis. The ranking 

results only indicate how well each arbiter supports the specific behavior set used in this 

study and in no way suggest that competitive arbitration techniques are poor in general. 

5.2 Case Study II:  Automatic Discovery of Behavior Structures 
The development of coherent and dynamic behaviors for mobile robots is an 

exceedingly complex endeavor ruled by task objectives, environmental dynamics and the 

interactions within the behavior structure. This section discusses the use of the UBF’s 

flexible hierarchical structures using interchangeable behaviors and arbitration techniques 

[55, 56] to evolve good behavior structures. 

Given the number of possible variations provided by the framework, evolutionary 

programming is used to evolve the behavior design. Competitive evolution of the 

behavior population is used to incrementally develop feasible solutions for the domain 

through competitive ranking. By developing and implementing many simple behaviors 

independently and then evolving a complex behavior structure suited to the domain, this 

approach allows for the reuse of elemental behaviors and eases the complexity of 

development for a given domain. Additionally, this approach has the ability to locate a 

behavior structure which a developer may not have previously considered, and whose 

ability exceeds expectations. The evolution of the behavior structure is demonstrated 

using agents in the Robocode environment, with the evolved structures performing up to 

122 percent better than one created by an expert. 

Mobile robots inherently exist in dynamic environments and are expected to react 

well in unpredictable situations while performing their task(s). Currently, most robots 
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employ some form of reactive behavior architecture [44]. To cope with the variety in the 

environment, agents are implemented with a broad set of skills, or behaviors. The goal of 

fusing several behaviors into a single complex behavior is to deliver a coherent sequence 

of actions that are ultimately more effective in a given environment than any single 

behavior [52]. Such attempts have proven to be a significant endeavor for two reasons. 

The first is that the code complexity of a behavior grows exponentially as additional traits 

are added. The second is that development of a behavior that tries to maximize some 

criteria while minimizing others is the optimization of a multi-objective problem [52]. 

To ease the complexity of designing and coding a behavior-based system, the 

ability of the UBF to form arrangements of elemental behaviors into arbitrated 

hierarchies that are logically, if not semantically, correct.  By using this attribute of the 

UBF and the environment as an evolutionary pressure, an initial population of randomly 

formed structures is able to organize itself into coherent behaviors that are well suited to 

combat. Through the repetitive application of ranking each member and then evolving the 

population by application of a genetic programming algorithm, behavior structures 

emerge that are effective on an absolute scale [35].  

The discussion of this experiment is broken into the following sub-sections: 

relevant background on evolutionary computation principles, the system’s high level 

design, a detailed explanation of the fitness function and the genetic program, a 

description of the behavior/arbiter components available for this experiment, a 

description of the XML behavior representation, the presentation of the results obtained 

from the evolution of eight independent populations, and concludes with a discussion of 

the overall experiment. 

5.2.1 Evolutionary Algorithms Background 
The class of stochastic, global search and optimization algorithms that use the 

repetitive application of seemingly simple rules to discover emergent behaviors are 

known as evolutionary algorithms (EA). Such techniques loosely imitate natural 

evolution and the Darwinian concept of Survival of the Fittest [29]. EA techniques are 

especially effective in large search spaces because, they have a random element that 

makes them less susceptible to becoming trapped in a local minimum. Since evolutionary 



65 

pressures are directing the search, they provide good solutions to a wide range of 

optimization problems that traditional deterministic search methods find difficult [31]. 

In nature, the evolutionary process occurs when the following four conditions are 

satisfied: 1) an entity has the ability to reproduce itself, 2) there is a population of such 

self-reproducing entities, 3) there is some variety among the self-reproducing entities, 

and 4) some difference in ability to survive in the environment is associated with the 

variety [35]. 

One particular subset of EA algorithms is genetic programming (GP). This subset is 

defined by its ability to manage the adaptation of complex structures. Typically the 

structures are hierarchical in nature, stored as trees, rather than sequentially as in genetic 

algorithms. Since the organization and ordering of a member’s structure is important, it 

must be preserved during crossover (or sexual recombination). A single GP cycle, 

referred to as an epoch, consists of five major events: 1) a fitness evaluation of each 

member’s ability to cope in the environment, 2) a ranked ordering of the population, 3) a 

period of recombination where the strongest members have the greatest probability of 

reproducing, thus propagating successful attributes, 4) an opportunity for mutation, which 

is optionally used to introduce variety and avoid local minima and 5) a pruning of the 

population size by removing unfit members. Once one epoch is complete a new epoch 

begins [19, 36]. 

Many times an environment is competitive or adversarial in nature, meaning that 

the members of a population must gain their fitness measure at the expense of another. 

Such competitive evolutions rank individuals in the population relative to their peers. 

This approach is beneficial because, despite the members of the initial population being 

highly unfit, over a period of time, members evolve and rise to higher levels of 

performance as measured in terms of absolute fitness. What is interesting is that such a 

process is a self-organizing, mutually bootstrapping process that is driven only by relative 

fitness (and not by absolute fitness) [35]. 

5.2.2 High-Level Design 
Because the UBF behavior structures are trees, consisting of root nodes with 

arbiters and leaf behaviors, the mapping to a genetic programming representation is 
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straightforward. The high-level design of the evolutionary system used to automate the 

discovery of effective behavior structures is centered on the fitness function and the 

evolution engine. An adaptation of the Robocode robot battle simulator, described in 

section 5.1.1, forms the basis of the fitness function which interacts with the evolution 

engine via input and output files. Each epoch of the evolutionary process is established 

by the repetition of four execution stages: Stage I enacts the relative fitness function 

described in section 5.2.3 to evaluate the relative fitness of individuals in a population. 

Stage II is the evolutionary engine that advances a population, P(t), by one generational 

time, t, i.e. from P(t) to P(t+1). Stage III enacts the absolute fitness function described in 

section 5.2.3 to measure a population’s current level of fitness, in reference to an 

unchanging benchmark behavior. Stage IV is a parser that maintains a historical record of 

each population’s evolutionary progress. This four step cycle is shown in Figure 5.5. 

 
Figure 5.5: Cyclical progression of Stages I through IV. 

The details for each of the four execution stages are presented below: 

Stage I—is the relative fitness evaluation period. The fitness function sets the battlefield 

conditions using the ten-on-ten melee battle file and configures each combatant 

with their current behavior structure, which is stored as an XML behavior 

representation in the behavior.XML file. The Robocode simulator plays out a series 

of engagements and writes a summary to the results file. 

Stage II—is the evolutionary engine that moves a population from one generational time 

step to the next. The evolution engine loads the current population, P(t), of behavior 

structures from behavior.XML and assess the relative fitness of each member using 

the results file. The genetic program then generates the subsequent population, 

P(t+1), and concludes by writing the behavior representation of P(t+1) to the 

behavior.XML file. 

Stage III—measures the absolute fitness of the population relative to a fixed benchmark 

behavior. This evaluation period only provides a reference from which to observe a 



67 

population’s progress over time and never acts as an evolutionary pressure. The 

best performing member from the previous generation is measured against the 

benchmark. The summary of this battle is saved as the results file and is used as 

input for Stage IV. 

Stage IV—is a parser that captures the fitness measurement from Stage III and maintains 

a historical record of a population’s progress throughout its evolution. 

5.2.3 Fitness Function 
The scoring mechanism provided in Robocode provides a quantifiable metric that 

indicates the relative fitness that two or more behavior structures have in a given 

environment. In this experiment the fitness function is configurable to operate in either a 

relative or an absolute fitness evaluation mode. The first is used during Stage I to rank the 

individuals in a population relative to each other. The second evaluation mode is used in 

Stage III to capture a population’s absolute fitness relative to an unchanging benchmark 

behavior. This section concludes with a discussion of the noise parameters inherent in 

using a nondeterministic fitness function and presents the standards for this experiment. 

5.2.3.1 Relative Fitness Mode 
The relative fitness mode is the evaluation mode used during Stage I and ranks 

individuals in the population relative to their peers, regardless of their absolute fitness. 

The Robocode application is configured using the melee battle file and places ten robots 

on the battlefield for a twenty-five round, all-for-one melee. Because individuals advance 

their score by exploiting other members, the scores that result from this sequence provide 

a means of stratifying the members of a population relative to each other. Each member’s 

rating is calculated as the percent difference of a nominal score; values above zero 

indicate superior combat skills while below zero ratings indicate an inferior level of 

performance. The probability of selection for an individual is based on their fraction of 

the total score. 
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An individual’s rating and probability of selection are defined by equations (1) and 

(2) respectively, where n denotes the number of members in a population and k is a 

specific individual. Equations (1) and (2) are applied to a set of sample data and 

presented in Table 5.2. Using the sample results in Table 5.2, a nominal score is 3410 and 

a member with this score earns a rating of 0% and a probability of selection of 0.100. 

Thus the member Charlie, whose score is 6383, earns a rating of 87% and a probability of 

selection of 0.187 because its earned score is 87% greater than the nominal score. 

 

Table 5.2: Melee results stratify individuals relative to the other members in a population.  

Member Score R(k) Pr(k) 
Charlie 6383 87% 0.1872

Golf 4397 29% 0.1289
Delta 3816 12% 0.1119
Juliet 3622 6% 0.1062

Bravo 3214 –6% 0.0943
Hotel 3156 –7% 0.0926
Alpha 2865 –16% 0.0840
Echo 2474 –27% 0.0726

Foxtrot 2114 –38% 0.0620
Indigo 2058 –40% 0.0604
Total 34099 0% 1.0 

5.2.3.2 Absolute Fitness Mode 
The absolute fitness mode is the evaluation mode used during Stage III to gain 

insight into how subsequent generations of a population progress over time by ranking 

against a fixed benchmark behavior. This evaluation is used to observe the fitness of a 

population on an absolute scale and is never used to drive the direction of the evolution 

process. In this mode, the Robocode application is configured to set the population’s 

fittest member against the benchmark behavior for a twenty-five round, one-on-one 

battle. 

In most cases this approach provides a good estimate of absolute fitness. However, 

in some cases, a population can discover structures that are particularly good at defeating 

the benchmark without being a globally optimal solution. For this reason, these values 

only serve as an indicator of how a population is progressing towards the notion of 

absolute fitness. 
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The benchmark behavior, as generated by a user expert, is shown in Figure 5.6 and 

consists of the behaviors Wander v3, Charge, Dodge and Fire v1 joined by an activation 

fusion arbiter. The benchmark’s observed behavior has three operating modes: one that 

executes a random S-wander pattern across the battlefield while attempting to track and 

shoot opponents, another which aggressively charges towards a nearby weaker opponent 

with guns blazing, and an evasive behavior that emerges above the other two when the 

benchmark is taking fire from unseen opponents. 

 
Figure 5.6: The control structure of the benchmark behavior. 

5.2.3.3 Noise Parameters 
The jitter inherent in the absolute fitness function is caused by the stochastic 

variance in the simulator’s ability to accurately stratify members relative to each other. 

The nondeterministic progression of battles in Robocode is caused by random starting 

postures and the dynamic interaction of opposing behavior algorithms. The results of any 

one battle have some level of uncertainty, with the more rounds per battle, the smaller the 

uncertainty. To demonstrate this, a sequence of battles is created with the benchmark 

facing itself in combat. On average, when identical behavior structures are set against 

each other, neither one should score better than the other. When battles consist of five 

rounds each, the average relative fitness measured is 0.6% with a standard deviation of 

40.2%. When battles consist of twenty-five rounds each, the average relative fitness is 

0.5% and the standard deviation drops to 17.6%. These results are shown in Figure 5.7 as 

(A) and (B) respectively. 
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Figure 5.7a: Noise for Benchmark vs. Benchmark (5-rounds). 

 
Figure 5.7b: Noise for Benchmark vs. Benchmark (25-rounds). 

Although increasing the number of rounds per battle reduces jitter and more 

accurately stratifies an individual’s relative fitness, this approach is prohibitive due to 

time requirements. To keep the speed of the evolutionary cycles manageable, twenty-five 

round battles are established as the standard for this experiment, setting the fitness 

function’s noise parameter at plus or minus 17.6% per battle. To provide a cleaner 

representation of how sequences of battles are progressing, a ten-tap moving average is 

applied to smooth the results and establish a noise floor. Applying this filter to the data in 

Figure 5.7b establishes a noise floor expectation with a near zero average and a jitter of 

5.45%. The effect of using this approach is illustrated in Figure 5.7c. 
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Figure 5.7c: Applying a 10-tap moving average dampens variance, shows trends over 
time and establishes the experiment’s noise floor. 

5.2.4 Genetic Program 
The hierarchical nature of behavior structures under the UBF allows a genetic 

program (GP) to perform a stochastic search of the solution space. The GP in this 

experiment maintains a fixed population of ten members and uses elitism, mutation and 

generational recombination to guide the search from an initial random population 

towards a set of behavior structures that are coherent for the domain. The GP’s parameter 

settings are specified in Table 5.3. 

Table 5.3: Parameter Settings for the genetic program. 

Parameter Symbol Setting 
Population Size n 10 
Elitism Rate (%) E 10% 

Mutation Rate (%) M 10% 
Generation Rate (%) G 80% 
Contributing Set Size r G · n 

Variance (%) v ± 10% 
Max Branching b 4 

Max Depth d 7 
Number of Generations X 1000 

   
The Elitism rate (E) provides the GP a means of propagating successful structures 

as they are discovered. By advancing a fraction of the population with highest fitness 

directly from population P(t) into P(t+1), the GP partially becomes hill climbing. 

The Generation rate (G) specifies the rate of generational recombination. This 

fraction of the population P(t+1) are new behavioral structures formed by the crossover 
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of members in the contributing set. Recombination is a two step process consisting of a 

selection step and a crossover step: 

The selection process uses stochastic universal selection (SUS) [5] to choose the 

contributing members from the population P(t). SUS uses r equally spaced markers 

across the population’s score distribution. The selection markers shift within the selection 

space based on the initial value (or seed). The seed is a randomly selected value between 

zero and 1/r. Using the sample results in Table 5.2 and a seed of 0.0825, a selection 

process is shown graphically in Figure 5.8 where the application of SUS chooses the 

individuals Alpha, Charlie, Charlie, Delta, Echo, Golf, Hotel and Indigo to form the set of 

contributing members. SUS is used over fitness proportional selection in an attempt to 

avoid premature convergence of the population by allowing successful individuals a good 

opportunity at selection while still giving less successful members an opportunity to 

contribute their genetic material to the next generation. 

 
Figure 5.8: Eight members are selected from the current population using SUS across the 
score distribution and a random seed of 0.0823 to form the contributing set. 

During crossover, pairs of individuals are randomly selected from the contributing 

set of members and through the process of genetic recombination, each pair forms two 

new individuals that are ultimately introduced into the population P(t+1). The crossover 

process is illustrated in Figure 5.9. During a crossover event, a randomly selected branch 

is removed from each contributing member and given to the other. The portion received 

is placed at the crossover site. By swapping behavioral substructures, the two offspring 

are unique structures, but are a derivative of their parent’s attributes. 

 
Figure 5.9: The contributing individuals are randomly paired to form four crossover 
events. The eight subsequent individuals become members of the population P(t+1). 
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Before being added to the population P(t+1), the resulting offspring are pruned at 

the maximum depth (d) to limit their complexity and are given additional variation (v) 

through fluctuations in the behavior weightings held by each arbiter. The new generation 

of members is then introduced into the population P(t+1). 

The Mutation rate (M) specifies the fraction of the population P(t+1) that are 

formed as randomly generated behavior structures. The addition of the random members 

to the population maintains the genetic diversity of the population and promotes 

exploration throughout the course of the search. 

5.2.5 Description of Elemental Components 
Using the UBF interface, thirteen elemental behaviors and seven arbiters are 

developed and tested as independent components. The functionality of each component is 

briefly described below and then used as the pool of genetic material from which 

members of the population are formed. The behaviors are: 

Charge—when another robot (with a lower energy level) is detected, this behavior 

causes our robot to turn towards the other and charge towards it, attempting to 

cause damage by hitting it. 

Dodge—when hit by a bullet or by another robot, this behavior causes our robot to 

respond with an evasive maneuver based on the type of attack and afflicted 

quadrant. 

Fire v1—has three operating modes. When no target is detected, the default mode 

turns the turret in a clockwise direction. When a target is detected, the target 

tracking algorithm causes the gun turret rotation to slow or reverse its 

direction in an attempt to continue tracking the target. In addition to target 

tracking, when the target is less than three degrees off boar site our robot will 

fire on another, the power committed to the bullet is reduced as a function of 

the target off boar site angle. 

Fire v2—is exactly like Fire v1 with the exception that the maximum power is 

always committed to the bullet. 

Return Fire—holds a grudge against another that has previously attacked our robot. 

When no specific target is set, the default mode behaves exactly like Fire v2 
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until our robot is shot or hit by another. When an aggressive opponent is 

specified, only that target is engaged. The aggressor remains the target until it 

is killed. 

Scan Left—turns the gun turret and the radar counterclockwise. 

Scan Right—turns the gun turret and the radar clockwise. 

Short Range Fire—is based on Fire v1, but only fires at targets that are at close 

range and are less than fifteen degrees off boar site. Maximum power is 

always given to the bullet. 

Sitting Duck—will always recommend that our robot stop all motion, including the 

motion of the gun and the radar. 

Sniper Fire—is adapted from Fire v1 and is specialized to attack slow moving 

targets at long ranges. When a target is found to be stopped or moving slowly 

it recommends that our robot stop its movement and track the target until it is 

less than one half of a degree off boar site. Maximum power is always given 

to the bullet. 

Wander v1—circumnavigates the perimeter of the board. Our robot’s current 

velocity is maintained unless it is less than the minimum. 

Wander v2—simulates Brownian motion by randomly executing a series of fifty 

degree arcs. When a wall is detected, the current velocity is flipped to reverse 

our direction. 

Wander v3—performs a series of "S" turns. Random selection is used to set the 

length of the arc to be between thirty and one hundred twenty degrees before 

changing the turn direction. When a wall is found, the current velocity is 

reversed to change our direction. 

The available arbitration techniques are: 

Activation Fusion—is a semi-cooperative arbiter that uses a highest activation 

selection approach on a per motor command basis. Unlike highest activation, 

activation fusion builds a new action set, allowing the motor commands left 

unspecified by the behavior with highest level of activation to be set using the 

recommendations of behaviors with lower activation levels. When used with 
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market based systems, this technique is easily referred to as utility fusion, but 

risks confusion with Rosenblatt’s utility fusion [44] behavior architecture. 

Command Fusion—is derivation of the motor schema architecture [2], a cooperative 

arbitration approach that uses summation and normalization of proposed 

motor commands to derive the resultant set of motor commands. The input of 

all contributing behaviors are used on a per motor command basis to form the 

resultant command vector. 

Highest Activation—is a winner-take-all arbiter that returns the action set with the 

highest vote value. Inspired by the action-selection architecture [37], this 

approach provides a dynamic mechanism for competitive selection by 

allowing behaviors to indicate their urgency for activation. Associated 

behavior weights are used to internally tune global performance by scaling the 

votes of behaviors that either over or under vote. The concept of activation 

levels is synonymous with the concept of utility in market based systems. 

Highest Priority—is a winner-take-all arbiter that returns the action set of the 

highest priority behavior indicating a desire to act, regardless of vote value. 

Like Subsumption [15, 17], the recommendations of lower priority behaviors 

only execute if higher priority behaviors abstain. 

Monte Carlo—is a stochastic arbitration technique that uses fitness proportional 

random selection to activate one sub-behavior for a period of time. At the end 

of the period another random selection occurs, activating the chosen sub-

behavior for the current period. 

Null Arbiter—always passes an empty action back, regardless of the action set 

passed in. Using this arbiter deactivates the branch of control where it is 

applied. 

Priority Fusion—is a semi-cooperative arbiter that uses priority based arbitration on 

a per motor command basis. Unlike the highest priority arbiter above, priority 

fusion builds a new action set that allows the unspecified action fields of 

higher priority behaviors to be filled by lower priority action requests. 
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5.2.6 XML Behavior Representation 
The tree structure of behaviors under the UBF allows them to be represented 

directly using extensible markup language (XML). In general, XML is a text based file 

that uses a structured language format to communicate information and is typically used 

to support interoperability between independent systems. In this experiment, an XML 

representation of the current behavior population is stored in the behavior.XML file. An 

example of a behavior structure encoding is given in Figure 5.10. 

 
Figure 5.10: Example of a behavior structure and the corresponding XML encoding. 

This experiment uses the XML behavior representations to allow changes made by 

the evolution engine to configure the fitness function. In Stage I, the fitness function 

configures the battle by placing the robots Alpha through Juliet on the battlefield. Each 

robot then request their behavior from the behavior factory [25]. Within the factory are 

mechanisms for parsing the behavior.XML file and reconstructing a behavior structure 

from its XML representation. Additionally, the use of XML allows a representation of the 

current population to be continuously available in a persistent state, allowing an 

evolutionary process to be started, stopped and re-started at will while limiting the risk of 

loosing computational progress to a single epoch. 

5.2.7 Results 
In this experiment, eight behavior populations are independently evolved over the 

course of 1,000 generations. While the initial populations are collections of randomly 

generated behavior structures and are generally unfit on an absolute scale, they introduce 

variety into the population. Through the repetitive ranking, selection and recombination 

of the members within a population, initially random structures organize themselves into 

populations of structures that are measurably effective on an absolute scale [35]. 
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In this experiment each of the eight initial populations converges on relatively 

simple solutions that exploit the homeostatic aspects of the Robocode domain [3]. This 

section discusses how the populations’ absolute fitness progresses over time, then 

discusses the critical aspect of the Robocode domain that acts as the evolutionary 

pressure shaping the solutions, and finally concludes with a comparison of how the 

individual solution structures rate relative to each other. 

The absolute fitness of each population is a measurement of the population’s 

performance against the fixed behavior structure, which allows the progress of 

independent evolutions to be compared directly. The fitness rating is calculated as the 

percent difference of a nominal score; values above zero indicate superior combat skills 

while below zero ratings indicate an inferior level of performance. The trend graph 

presented in Figure 5.11a shows the fitness of eight populations as they evolve over time. 

 
Figure 5.11a: Progression of eight populations as measured relative to the benchmark. 

 
Figure 5.11b: Progression of average fitness as measured relative to the benchmark. 
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The use of a fixed benchmark behavior to evaluate absolute fitness is somewhat 

misleading because it allows configurations that are exceedingly effective against the 

benchmark to achieve high fitness ratings without being an effective solution in general. 

This anomaly presents itself during run eight which initially favors a configuration that 

displays a high level of fitness against the benchmark (see generations 100 through 300 in 

Figure 5.11a), but later abandons that family of configurations in favor of structures that 

are more successful in general. To reduce the affects of such anomalies and achieve a 

better indication of how the populations are progressing towards absolute fitness, the 

average progress of the eight populations is used. Figure 5.11b presents the average 

progress of the eight populations as measured against the benchmark. 

Looking at the progression of average fitness during the course of one-thousand 

generations, a notable period of improvement occurs during the initial two-hundred 

generations where fitness improves from a nominal rating to a rating of 78%. The 

remainder of the evolution is relatively stable, maintaining an average rating of 94% 

against the benchmark and ends with a rating of 101%. A progression of the absolute 

fitness using discrete time steps is presented in Table 5.4. 

Table 5.4: Progression of absolute fitness during discrete intervals of 100 generations. 

Generations Minimum 
Rating 

Average 
Rating 

Maximum 
Rating 

1 –   100 -1% 6% ±8% 21% 
101 –   200 31% 57% ±16% 78% 
201 –   300 77% 83% ±5% 89% 
301 –   400 87% 89% ±18% 92% 
401 –   500 93% 97% ±2% 99% 
501 –   600 97% 98% ±14% 101% 
601 –   700 95% 100% ±3% 104% 
701 –   800 90% 91% ±1% 93% 
801 –   900 93% 96% ±2% 98% 
901 – 1000 95% 98% ±2% 101% 

     
While the evolution of eight independent populations converges on a variety of 

solutions, each structure captures a similar aspect of the Robocode domain. The 

populations naturally move towards somewhat passive solutions that are capable of 

attacking a target when conditions are favorable. This approach is effective because a 

robot must commit a fraction of its energy when shooting at an opponent. Like gambling, 
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it benefits a robot to shoot when there is a reasonable expectation of hitting a target. If the 

shot misses, the committed energy is lost. If the shot hits a target, the target’s energy is 

reduced by that amount and the shooter claims twice the energy committed. Observations 

made during the fitness evaluations in Stage III show that the aggressive nature of the 

benchmark behavior is self-defeating because it often fires from long distances where 

there is little expectation of scoring a hit. The more conservative behavior allows 

members to achieve high relative fitness ratings by simply evading the benchmark until it 

cripples itself by draining its own energy reserves. 

 
Figure 5.12: Behavior structures discovered from the evolution of eight randomly 
generated behavior populations. 

The solution structures discovered by each of the eight populations are shown in 

Figure 5.12. At first glance, the common thread between the solutions is that they each 

employ a motion behavior and a tracking/shooting behavior joined by a fusion based 

arbiter. The use of a fusion based arbiter allows the robot to pursue multiple objectives 

simultaneously. 

Conspicuously missing from the solutions above are the shooting behaviors: Return 

Fire, Fire v1 and Sniper Fire. Having identified the importance of using a more 

conservative shooting approach, Fire v1 and Return Fire are undesirable because they 

impose no range restriction and take unlikely shots at distant targets. The Sniper Fire 

behavior, a highly specialized behavior for shooting unmoving targets at long range, is 
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likely to become obsolete because a population adopts continuous motion as a minimal 

requirement for survival. 

Of the motion based behaviors, Wander v2, Charge and Dodge each fail to make an 

appearance in the solution set. Wander v2, which simulates Brownian motion, was 

intended to produce erratic movements that can not be effectively tracked by an 

opponent. In reality, it produces erratic motion in a localized area, making shots in the 

general direction more likely to score a hit. As noted above, somewhat passive behaviors 

are able to conserve their energy and achieve higher mortality rates, thus a behavior, like 

Charge, that moves our robot into an opponent’s effective radius is also unfavorable. The 

absence of the Dodge behavior suggests that an ability to sustain continuous motion can 

act as a passive means of evading incoming attacks and indicates that such defensive 

measures are “good enough.” 

Observations of the solution structures in Figure 5.12 during battle shows that each 

is coherent, meaning that the behavior has the ability to perform basic elements of 

combat like tracking and shooting targets while moving within the battlefield without 

impeding its own progress towards the immediate goal and is able to consistently 

demonstrate a level of fitness that is superior to the benchmark. The real question is, 

“How good are these solutions on an absolute scale?” 

To better understand how the eight solutions rank on an absolute scale, the eight 

solutions are compared in an eight-on-eight battle to discover the fitness of each solution 

structure relative to the others. This approach uses a series of 250 battles to create an 

inter-population fitness evaluation and the results are shown in Figure 5.13. Rather than 

separating into bands, where some solutions consistently achieve higher performance 

ratings than others, they are (with the exception of population 5) tightly interwoven, 

indicating that the solutions presented by the individual evolutions are equally matched. 

With a performance variance equal to the noise floor, seven of the resulting behavior 

structures are considered to be equivalent solutions. 
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Figure 5.13: Relative fitness of the eight population runs, where seven of the solutions are 
considered equivalent. The outlier is run 5. 

The solutions presented by each run are relatively simple structures, lacking the 

depth and complexity typically associated with genetic programming solutions. Each 

solution structure presents a clear pairing of one motion behavior with one or two 

shooting behaviors. The lack of multiple skills within successful structures indicates that 

the scope of the elemental behaviors is too large. The behaviors provided, while 

incomplete for the domain, prefer to act alone and do not act as generic operators that can 

be composed by an EA to form deeper and more intricate solution structures that have 

coherent outward operations. 

5.2.8 Discussion 
The ability of the unified behavior framework to simplify the development and 

testing of behaviors for a given domain is demonstrated through the use of a genetic 

program to automate the discovery of effective behavior structures from a pool of simple 

behavior and arbitration elements. In this experiment, a genetic program is used to 

discover combinations of elemental components that contribute to the robots motion and 

its ability to track and shoot targets. The ability of the UBF to support the composition 

and recombination of behavior structures by the genetic program validates its ability to 

form structures that are logically correct, if not semantically coherent for a given domain. 

In robotic behavior-based system development, the optimal solution is generally 

unknown and potentially changes with the introduction of new components. Along with 

the broad capabilities of the UBF, the use of a stochastic search discovers good solutions 
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and is recommended as a useful tool for developing behavior-based systems. The results 

show that this method is more effective than relying on raw human cleverness to achieve 

an optimal configuration directly. Additionally, the close relative fitness of the solution 

structures indicates that many equivalently good solutions exist within a domain, and that 

the approach is feasible for other robotic domains. 

5.3 Case Study III: Real-Time Behavior-Based Controller 
Autonomous systems that operate in the real-world have an inherent requirement to 

be both robust and responsive to sudden and unpredictable changes in the environment. 

Typically, reactive behavior routines are tasked with maintaining the safe operation of the 

system and, as demonstrated by YARA [18], the ability of these low-level routines to run 

at periodic intervals is crucial to the safety and reliability of the robot’s operation. The 

need to make some processes “more important” than others is becoming common in 

applications where responsiveness is measured in milliseconds of delay. This section 

presents the UBF in a goal directed configuration performed using a Pioneer P2-AT8 

robot running RTAI [38] beneath a standard Linux [49] installation and an adaptation of 

the Player control suite [27]. This implementation demonstrates that the system is able to 

maintain a stable basis of reactive-control with time-critical tasks responding with less 

than 100 µs of delay, regardless of the system’s computational load. For this study, the 

computational burden normally imposed by predictive and deliberative elements are 

simulated using ten continuous ping floods to the local host address. By establishing the 

robot’s reactive controller as a set of real-time processes, the routines that update the 

State and form the goal directed behavior execute at established intervals that are 

unaffected by the adverse computational loads that are disruptive to other concurrent 

processes competing for processing time within the Linux user-space. 

The discussion of this experiment is broken into the following sections: the 

system’s high-level design, an explanation of the UBF integration with the Player control 

suite to form a responsive behavior-based controller, a description of the goal directed 

behavior structure, and concludes with the experiment results and a discussion of the 

experiment overall. 
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5.3.1 High-Level Design 
The Pioneer P2-AT8 is a four-wheeled robotic platform equipped with 16 sonar 

sensors to sense obstacles and a dead reckoning navigation capability. An ability to 

schedule the robot’s low-level control routines as periodic real-time tasks is provided by 

hooks into the RTAI microkernel while all other processes execute in the user-space of a 

typical Linux environment. In this experiment, elements of the Player control suite are 

used to establish a behavior-based controller based on the UBF design presented in 

Chapter IV.  To give this behavior-based controller the ability to provide a responsive 

basis of reactive control, independent of fluctuation in the system’s computational load, 

the controller’s subcomponents are established as hard real-time tasks that bypass the 

Linux scheduler and run in the context of the RTAI scheduler. A block diagram of the 

high-level design is presented in Figure 5.14 and shows how RTAI resides directly above 

the Pioneer hardware and that the behavior-based controller processes are able to bypass 

Linux and be treated as real-time processes by the RTAI scheduler. 

 
Figure 5.14: Real-time Player tasks bypass Linux and run on the RTAI scheduler. 

The behavior-based controller is made responsive by allowing its subcomponents to 

preempt the Linux environment and execute at assigned intervals. The p2os_driver and 

controller components are modifications of the Player control suite while the gotoXY and 

wander modules are implemented using the threaded behavior design presented in section 

4.7. These two behaviors are joined by a higest_activation arbiter to form the goal 

directed behavior used by the controller. By implementing these four execution threads as 

hard real-time tasks, a basis of control is established that guarantees less than 100 µs of 
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delay, regardless of the computational load that exists in the Linux user-space. Table 5.5 

presents the scheduling specifications for this design along with the priorities and 

periodic execution rates for each task. The p2os_driver provides a central service by 

ensuring that the State correctly represents the current environment. If the State falls out 

of sync with the real-world, the remaining controller components become ineffective, 

consequently the p2os_driver task holds the highest priority and executes at 10 ms 

intervals. The elemental behaviors are given the next highest priority because their 

evaluations of the State form the basis of what actions the controller’s active behavior 

will recommend at any given time. The final consideration is that the execution rate of 

the controller is set to request an action recommendation at twice the rate of the fastest 

elemental behavior, an approach based on the Nyquist sampling rate [42]. Because simple 

periods are used, harmonics exist that require some processes to run at exactly the same 

time. To reduce unnecessary latency due to scheduling collisions, the absolute execution 

time of each task is staggered using offset values that cause the tasks to interleave their 

execution times. 

Table 5.5: Scheduling configuration for real-time tasks. 

Task Description Offset Period Priority 
p2os_driver Pioneer HW Interface 10 ms 10 ms 1 
Controller Behavior-Based Controller 0 ms 100 ms 3 

gotoXY Elemental Behavior 20 ms 25 ms 2 
Wander Elemental Behavior 30 ms 25 ms 2 
Linux The Linux Environment idle 9999 

5.3.2 Player Adaptation 
The modification to the Player control suite [27] that forms a responsive behavior-

based controller is two fold: The first modification is that a behavior-based controller is 

established by replacing the clientproxy concept with thread-safe versions of the standard 

UBF State and Action interfaces. The second modification allows the Pioneer drivers to 

switch into a hard real-time mode, making them schedulable as priority tasks that 

preempt the Linux kernel when they enter a ready to run state and register with the RTAI 

hardware abstraction layer to interface with the hardware components in real-time. 

The low-level control loop of the behavior-based controller consists of the 

continuous execution of the three-step process presented in Figure 5.15. First, the State is 
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updated by the p2os_driver to represent the current conditions of the environment. 

Second, the active behavior is asked to generate a recommended action by invoking the 

genAction method. Finally, the proposed action is given the authority to issue motor 

commands to the driver via the execute method, closing the sensing/action control loop of 

the low-level controller. 

 
Figure 5.15: A behavior-based controller modeled after on the UBF. A low-level control 
loop is established a three step process (1) update the state; (2) generate an action 
recommendation; (3) authorize the action to enact motor commands on the robot. 

Under this behavior-based controller design, the set of behaviors assume that the 

State is representative of the current environment. This assumption places the 

responsibility of keeping the system in sync with the real-world onto the set of real-time 

drivers, because they are the routines that update the State with current sensor data. The 

ability to establish a driver as a real-time task allows its routines to execute at predictable 

intervals driven by the sensors update rate, which in turn ensures that the central State is 

updated at regular intervals. 

The next responsibility of the behavior-based controller is to generate an action 

recommendation based on the current conditions of the environment. By following the 

model of the UBF presented in Chapter IV, the controller keeps an active behavior 

without knowing about its implementation. In this design, the Server class is taken from 

the Player control suite and modified to form the real-time controller. Unlike the three-

step process presented in Figure 4.4, the State is updated asynchronously, and the 

controller assumes that the State is an accurate representation of the current environment. 

Thus, the controller enacts a two-step periodic process that first requests an action 

recommendation from its active behavior and then authorizes the action to enact the 
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recommended motor commands on the robot. This process is shown by the following 

pseudocode: 
while(running) { 
  action = activeBehavior.genAction(State); 
  action.execute(Robot); 
  rt_wait_period(); 
} 

The controller, like the p2os_driver, is established as a real-time task, allowing the 

active behavior to evaluate the environment at predictable intervals. An ability to 

regularly update and evaluate the environment allows the robot to operate in a safe and 

dependable manner by remaining responsive to changes in the environment. 

Following the UBF model, the State and Action classes are introduced as generic 

interfaces to the p2os_driver. The central State object is a representation of the current 

environment and includes decoupled sensor data, positional information, goals, and 

current operational parameters. Explicitly missing from the State are methods that access 

the p2os_driver’s motor command interface. This capability is embedded in the execute 

method of the Action class, and requires a reference to the robot’s p2os_driver. This 

requirement ensures the coordinated operation of the robot by allowing the controller to 

enact the action recommendation returned by the active behavior on the robot. The 

bifurcation of the p2os_driver into two interfaces allows the UBF to make information 

about the robot’s current state widely available while protecting against behaviors that 

may act unilaterally on the robot. 

The real-time processes gotoXY and wander are used to form the behavior-based 

controller’s goal directed behavior, which is presented in detail in the next section. 

5.3.3 Goal Directed Behavior 
A goal directed behavior is shown in Figure 5.16 and is established using a control 

structure that includes a goal-seeking behavior and a random-wander behavior joined by 

a highest activation arbiter. The goal-seeking element directs the robot along a direct 

route to a goal location specified in the shared State. The random-wander behavior 

provides a means of obstacle avoidance. The use of a highest activation arbiter allows the 

goal seeking component to yield to the random-wander behavior for a period of time in 
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an attempt to bypass an obstacle in the path toward the goal and then out vote it to make 

another attempt at moving towards the goal. Figure 5.17 shows the robot’s observed path. 

 
Figure 5.16: Control structure of a goal directed behavior formed from a goal-seeking 
element and a random-wander element joined by a highest activation arbiter. 

 
Figure 5.17: The observed path of the Pioneer P2-AT8 robot as it navigates a horizontal 
hallway from its starting location (S) to the target goal location (G). The shaded triangle 
represents the mid-course obstacle obscuring the robots path to the goal. 

The implementations of the elemental behaviors used in this experiment are based 

on the concurrent and real-time design presented in section 4.7. Each behavior maintains 

an action recommendation that is accessible by calling the genAction method. The 

evaluation logic that builds the action is moved into the run method and executes as a 

periodic real-time task to keep the behavior’s current action recommendation relevant to 

the current environment. 

At its highest level, a goal directed action recommendation is available via the 

genAction method. When an action recommendation is requested, the composite node 

builds a set of action recommendations by calling genAction on each its sub-behaviors. 

The set of actions is then evaluated by the arbiter to form a single action that is 

subsequently returned as the goal directed behavior’s current recommendation. 
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5.3.4 Results 
The results of this experiment demonstrate that a responsive basis of control is 

attained by implementing time-critical routines as real-time tasks. This experiment 

establishes a responsive basis of control using four periodic processes that are established 

as real-time tasks (i.e. p2os_driver, controller, gotoXY, and wander) and demonstrates the 

ability of these routines to execute at predictable intervals regardless of the computational 

load within the Linux user-space. The four routines that form, the behavior-based 

controller are instrumented to capture the current time and calculate the latency 

experienced per execution period. Latency is measured as the time between when a 

periodic task is scheduled to execute and when it actually beings executing. For example, 

if a task is scheduled to execute every 20 ms and the difference between the previous 

time hack and the current time hack is 22 ms, the reported latency is 2 ms. A process’s 

jitter is evaluated by making a series of latency measurements over time. 

The latency measurement achieved by this experiment far exceeds the 100 µs hard 

real-time guarantee provided by the RTAI documentation. The empirical results of this 

experiment indicate that the periodic scheduler executes tasks early, as indicated by the 

negative latency values in Table 5.6, and is predictably consistent on the order of ±1 ns. 

The jitter observed jitter for each real-time task is shown by the graphs in Figure 5.18. 

Table 5.6: Latency statistics for real-time tasks. 

Task Latency Maximum 
p2os_driver –1.5 µs ±1.0 ns 998 µs 

controller –15.1 µs ±1.0 ns 984 µs 
gotoXY –3.0 µs ±1.0 ns 996 µs 
wander  –3.0 µs ±1.0 ns 996 µs 

  
The latency measurements taken and the observed jitter for each task indicate that 

critical routines can be scheduled to execute at predictable intervals by removing them 

from the context of the Linux environment and running them as real-time processes. The 

periodic 1000 µs latency spikes have been linked to the RTAI periodic task scheduler and 

a bug report has been submitted to the RTAI project development team. 



89 

 
Figure 5.18: Observed latency jitter for (A) the controller task; (B) the p2os_driver task; 
(C) the gotoXY task; and (D) the wander task. 

5.3.5 Discussion 
Mobile robot architectures are a mixture of interconnected processes working to 

achieve specific results. With the speed of modern processors and the ability of operating 

systems to manage multiple threads of execution, many robot architectures are 

implemented using single processor systems. Research in mobile robotics and 

autonomous systems are also finding an increased need for process scheduling that is 

predictable and accurate in relation to the real-world. Mapping and navigation are 

examples of routines that are sensitive to unexpected latencies of more than one or two 

milliseconds. 

This experiment demonstrates that the ability to establish low-level control routines 

as real-time tasks is an effective approach to ensuring that a mobile robot can remain 

responsive to sudden and unpredictable changes in the environment. RTAI provides an 

ability to make some processes as “more important” by moving time-critical routines out 

of the Linux environment and into an environment managed by a real-time scheduler. By 
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running Linux on-top-of RTAI, the real-time scheduler runs the entire Linux environment 

as the idle process, maintaining the ability to preempt it when real-time processes become 

ready to run. The RTAI hardware abstraction layer intercepts and saves interrupt signals 

destined for the Linux kernel until all real-time processes have completed, when Linux is 

the running process RTAI passes the missed interrupts to the kernel, making Linux 

largely unaware that it is being subverted by the real-time scheduler [8]. 

The RTAI microkernel makes the following real-time services natively available to 

the developer: The LXRT package allows applications to dynamically designate POSIX 

threads as hard real-time tasks. Concurrency library supports priority inheritance, 

supplying read/write locks and semaphores that detect and avoid deadlock due to priority 

inversion. Precision clock allows developers to set timers and instrument processes with 

nanosecond granularity (10–9 seconds). 

Despite the added complexity of working with a real-time microkernel, the services 

afforded to the developer simplify the creation of systems that maintain consistent 

periodic execution schedules as a means of detecting and responding to a changing 

environment. The simplicity of this approach is that unbounded processing loads are 

allowed within the Linux user-space because the time-critical routines are managed by a 

real-time scheduler capable of preempting the entire Linux environment within a fixed 

period of time. 

The next logical question is, “How many real-time tasks can be supported by this 

approach?” Like YARA, this experiment focuses on allowing low-level control routines 

to remain predictably responsive to changes in the environment while sharing a single 

processing resource with computationally intensive routines. Although isolated from the 

effects of unpredictable fluctuations in a system’s computational load, the ability of a 

system to remain predictably responsive requires that the real-time domain behaviors 

identified as time-critical be managed as real-time components and do not jeopardize the 

system’s operational requirements. In other words, the determination of which, how 

many, and the timing constraints associated with the development of a real-time behavior 

based architecture are going to be dependent on the domain requirements. 
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5.4 Summary 
The results obtained in this chapter demonstrate the ability of the UBF’s modular 

design to simplify development and testing by keeping behaviors focused, supporting 

code reuse, allowing large hierarchical designs and encouraging experimentation. 

Additionally, the modular design of the framework allows elemental behaviors to be 

implemented as periodic tasks in a real-time operating system as a means of ensuring the 

responsiveness of critical routines. The first experiment, Case Study I, demonstrates how 

the modular design encourages experimentation through rapid prototyping and testing. 

Based on the elemental behaviors used in the experiment, fusion based arbiters, which 

arbitrate on a per motor command basis, provide more robust outward behaviors than 

traditional winner-take-all selection approaches. The second experiment, Case Study II, 

capitalizes on the framework’s ability to compose behavior structures and applies a 

genetic program as a means of automating the discovery of good behavior structures for 

domains where the optimal solution is unknown. The use of a stochastic search is able to 

discover effective solutions for homeostatic and multi-objective domains that are up to 

122 percent better than one created by an expert. The final experiment, Case Study III, 

demonstrates the ability of the framework to be used in a real-time context, allowing 

reactive and deliberative tasks to be interleaved while ensuring safe, dependable robot 

operation by guaranteeing that low-level control routines remain predictably responsive. 

This experiment demonstrates the ability of a periodic control routine to become the 

running process in less than 100 µs independent of the system’s computational load. 
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VI. Conclusions 

This investigation demonstrates that behavior-based control architectures share critical 

aspects and can be represented by a single straightforward unified behavior framework 

(UBF) and that the use of real-time scheduling technologies can allow low-level control 

routines to operate at scheduled intervals that are predictably responsive. This chapter 

reiterates the need for structured approaches towards software development and the need 

to incorporate real-time scheduling technologies to establish a responsive basis of low-

level control for mobile robots. The test results from Chapter V are summarized in 

section 6.2, and are followed by possible areas for future work. The final section, 6.4, 

presents the final remarks of this thesis. 

6.1 Summary 
The development of the UBF is intended to provide a framework for the 

development of reactive behavior architectures and is a structural guide that applies 

standard software engineering approaches to simplify development and testing of mobile 

robot controllers. Additionally, the modular design of the UBF allows the base behaviors 

to be implemented as real-time tasks to ensure the responsiveness of low-level control 

routines that are time sensitive or contribute to the safe operation of the system.  

Traditionally, a mobile robot design implements a single behavior architecture, 

which binds its performance to the strengths and weaknesses of that architecture. 

Monolithic implementations are further limited because they are platform specific and 

not reusable between robots. Instead of pursuing this, the UBF makes a separation 

between the controller and the reactive behavior logic. In order to do this, a strategy 

pattern establishes a family of interchangeable behaviors. The UBF also addresses the 

need for scalability by providing construction tools that allow robust structures to be 

formed as arbitrated hierarchies of small, highly focused components. The use of the 

composite pattern ensures that the resulting structures are scaleable and belong to the 

established family of behaviors. This approach eases design complexity, allowing atomic 

behaviors to be designed, implemented and tested independently and then joined together 
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to produce rich and coherent behaviors. The ease with which components can be formed 

into stable structures encourages reuse and experimentation.  

Driven by the requirement that an autonomous vehicle must not only be responsive 

in dynamic environments but rational and deliberative as well, the three-layer architecture 

has become a common paradigm for designing autonomous robot control architectures. 

Each layer of the architecture executes concurrently with the others, each pursuing their 

respective goals. 

The establishment of a family of behavior algorithms that can be used 

interchangeably by a robot’s low-level controller allows for the system to change its 

active behavior at runtime and provide a responsive and flexible basis of control for 

implementation in a three-layer architecture. This approach also gives a developer the 

freedom to use the behavior-based system they feel is the most appropriate for the given 

domain. The ability to develop focused behaviors as modules eases the complexity of 

designing and testing new behaviors. Such atomic behaviors can then be combined into 

arbitrated hierarchies that produce behaviors that are robust at the highest level. 

Despite the use of concurrent programming techniques, current three-layer 

architecture implementations are unable to guarantee that their reactive control processes 

will execute at regular intervals. This is not a failing of the architecture, but a failure of 

the thread scheduling algorithm used by modern operating systems. Applications are 

emerging where responsiveness is important and milliseconds of delay matter, and it is no 

longer enough to say that the highest priority process will be the next process to run. 

Instead, real-time tasks require a guarantee that the highest priority process will become 

the running process in set period of time. Case study III presents the UBF in a goal 

directed configuration performed using a Pioneer P2-AT8 robot running Linux on top of 

RTAI, and an adaptation of the Player control suite. By treating the goal directed 

behavior as a time critical task the system maintains a stable basis of reactive-control that 

becomes the running process in less than 100 µs, regardless of the current process load. 

6.2 Results 
The results obtained in this thesis demonstrate the ability of the UBF’s modular 

design to simplify development and testing by supporting code reuse, large hierarchical 
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designs and experimentation. Additionally, the modular design of the framework allows 

elemental behaviors to be implemented as periodic tasks in a real-time operating system. 

The first experiment, Case Study I, demonstrates how the modular design encourages 

experimentation through rapid prototyping and testing. Based on the elemental behaviors 

used in the experiment, arbiters which arbitrate on a per motor command basis provide 

more robust outward behaviors than traditional winner-take-all selection approaches. The 

second experiment, Case Study II, capitalizes on the framework’s ability to compose 

behavior structures and applies a genetic program as a means of automating the discovery 

of good behavior structures for domains where the optimal solution is unknown. The use 

of a stochastic search is able to discover effective solutions for homeostatic and multi-

objective domains that are up to 122 percent better than that of an expert. The final 

experiment, Case Study III, demonstrates the ability of the framework to be used in a 

real-time context, allowing reactive and deliberative tasks to be interleaved while 

ensuring safe, dependable robot operation by guaranteeing that low-level control routines 

remain predictably responsive. This experiment demonstrates the ability of a periodic 

control routine to become the running process in less than 100 µs regardless of the 

current computational load. 

6.3 Future Investigation 
Case study III demonstrates the ability of low-level control routines to execute at 

predictable intervals despite intensive processing loads at higher levels. This approach is 

useful in that it allows computationally intensive deliberative processes to share 

processing resources by running “in between” reactive control routines without degrading 

the responsiveness of reactive control routines. This study uses fixed periodic intervals, 

however, ultimately a developer would like to have an ability to dynamically reschedule 

low-level processes to allow their periodic execution rates to adjust based on the level of 

change in the environment. Consider a routine that processes the current global 

positioning satellite (GPS) signals to calculate the robot’s current position. If the robot is 

stopped or is moving slowly, the execution rate for this routine can be reduced, thus 

lending processing power to higher order routines. Conversely, when the robot is moving 

quickly this routine runs more frequently, reducing the amount of computation time 
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available to higher order processes. When used with a large base of reactive behaviors, an 

ability to expand and contract the execution rate of reactive tasks effectively allows 

mobile robot architectures to change from more deliberative to more reactive and back as 

the environment changes. The question that emerges is, “How can the rate of change in 

an environment be quantified and associated with the real-time execution rate of reactive 

control behaviors?” 

6.4 Final Remarks 
Efforts to develop autonomous vehicles that reduce the need for human-in-the-loop 

control are emerging in domains and range from the exploration of Mars via autonomous 

planetary rovers, airplanes, and balloons to reconnaissance operations by military and law 

enforcement agencies using handheld UAVs (unmanned aerial vehicles). For systems 

operating in the real-world, an ability to detect and handle external events is paramount to 

providing safe and dependable operation, because their unexpected operation can affect 

lives and property in the real-world. The unified behavior framework presented draws on 

modern software engineering principles to simplify development of reactive controllers 

without locking a system developer into using any single behavior system. Additionally, 

the unified behavior framework, coupled with a real-time process scheduler, allows 

routines that are critical to a vehicle’s safe operation to be predictably responsive as well. 



96 

Bibliography 
 

[1] J. Aas. "Understanding the Linux 2.6. 8.1 CPU Scheduler." Retrieved Oct, vol. 
16, 2005. 

[2] R. C. Arkin. "Behavior-based robot navigation for extended domains." Adaptive 
Behavior, vol. 1, pp. 201-225, 1992. 

[3] R. C. Arkin. "Survivable robotics systems: reactive and homeostatic control." 
Robotics and Remote Systems for Hazardous Environments, pp. 135-154, 1993. 

[4] R. C. Arkin. Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998. 
[5] J. E. Baker. "Reducing bias and inefficiency in the selection algorithm." 

Proceedings of the Second International Conference on Genetic Algorithms on 
Genetic Algorithms and their Application, pp. 14-21, 1987. 

[6] M. Barabanov, "A Linux-Based Real-Time Operating System," New Mexico 
Institute of Mining and Technology, 1997. 

[7] M. Barabanov and V. Yodaiken. "Introducing Real-Time Linux." Linux Journal, 
vol. 34, pp. 19-23, 1997. 

[8] T. Bird. "Comparing Two Approaches to Real-Time Linux." CTO of Lineo, 2000. 
[9] J. Bloch. Effective Java: Programming Language Guide: Addison-Wesley, 2001. 
[10] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. 

Turnbull. The Real-Time Specification for Java: Addision-Wesley, 2000. 
[11] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack. 

"Experiences with an Architecture for Intelligent Reactive Agents." Journal of 
Experimental and Theoretical Artificial Intelligence, vol. 9, 1997. 

[12] R. P. Bonasso and D. Kortenkamp. "Using a Layered Control Architecture to 
Alleviate Planning with Incomplete Information." Proceedings of the AAAI 
Spring Symposium\ Planning with Incomplete Information for Robot Problems, 
pp. 1-4, 1996. 

[13] R. P. Bonasso, D. Kortenkamp, and T. Whitney. "Using a Robot Control 
Architecture to automate Space Shuttle Operations." Proc. of the 1997 National 
Conference on Artificial Intelligence, pp. 949–956, 1997. 

[14] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: 
MIT Press, 1984. 

[15] R. A. Brooks. "A Robust Layered Control System for a Mobile Robot." IEEE 
Journal of Robotics and Automation, vol. RA-2, pp. 14-23, 1986. 

[16] R. A. Brooks. "Elephants Don't Play Chess." Robotics and Autonomous Systems, 
vol. 6, pp. 315, 1990. 

[17] R. A. Brooks. "New Approaches to Robotics." Science, vol. 253, pp. 1227-1232, 
1991. 

[18] S. Caselli, F. Monica, and M. Reggiani. "YARA: A Software Framework 
Enhancing Service Robot Dependability." Robotics and Automation, 2005. ICRA 
2005. Proceedings of the 2005 IEEE International Conference, pp. 1970- 1976, 
2005. 

[19] C. Coello Coello, D. Van Veldhuizen, and G. Lamont. Evolutionary Algorithms 
for Solving Multi-Objective Problems. New York, NY: Kluwer Academic, 2002. 



97 

[20] J. Connell. "A Behavior-Based Arm Controller." IEEE Transactions on Robotics 
and Automation, vol. 5, pp. 784-791, 1989. 

[21] S. Enderle, H. Utz, S. Sablatnog, G. Kraetzschmar, and G. Palm. "Miro: 
Middleware for Autonomous Mobile Robots." Robotics and Automation, IEEE 
Transactions, vol. 18, pp. 493- 497, 2002. 

[22] R. J. Firby, "Adaptive execution in complex dynamic worlds," Ph.D. Dissertation, 
Yale University, YALEU/CSD/RR #672, 1989. 

[23] R. J. Firby. "Task Networks for Controlling Continuous Processes." Proceedings 
of the Second International Conference on AI Planning Systems, 1994. 

[24] M. Fujita and K. Kageyama. "An Open Architecture for Robot Entertainment." 
Proceedings from the First International Conference on Autonomous Agents, pp. 
435-442, 1997. 

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Boston, MA: 
Addison-Wesley, 1994. 

[26] E. Gat. "On Three-Layer Architectures." Artificial Intelligence and Mobile 
Robots: Case Studies of Successful Robot Systems, pp. 195 - 210, 1998. 

[27] B. Gerkey, R. T. Vaughan, and A. Howard. "The Player/Stage Project: Tools for 
Multi-Robot and Distributed Sensor Systems." Proceedings of the 11th 
International Conference on Advanced Robotics, pp. 317–323, 2003. 

[28] R. L. Glass. Facts and Fallacies of Software Engineering: Addison-Wesley 
Boston, 2003. 

[29] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine 
Learning. Reading, MA: Addison-Wesley, 1989. 

[30] I. Horswill. "A Laboratory Course in Behavior-Based Robotics." IEEE Intelligent 
Systems, vol. 15:6, pp. 16-21, 2000. 

[31] P. Husbands. "Genetic Algorithm in Optimization and Adaptation." Advances in 
Parallel Algorithms, pp. 227 - 276, 1992. 

[32] IEEE. Portable Operating System Interface (POSIX): IEEE/ANSI Std 1003.1, 
1996. 

[33] L. P. Kaelbling, "An Architecture for Intelligent Reactive Systems," in SRI 
International Technical Note No. 400. Menlo Park, CA, 1986. 

[34] K. Konolige. "The Saphira Architecture: A Design for Autonomy." Journal of 
Experimental & Theoretical Artificial Intelligence, vol. 9, pp. 215-235, 1997. 

[35] J. R. Koza. Genetic Programming: On the Programming of Computers by Means 
of Natural Selection. Cambridge, MA: MIT Press, 1992. 

[36] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. 
Cambridge, MA: MIT Press, 1998. 

[37] P. Maes. "Situated Agents Can Have Goals." Robotics and Autonomous Systems, 
vol. 6, pp. 49 - 70, 1990. 

[38] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. "RTAI: Real Time 
Application Interface." Linux Journal, vol. 2000, 2000. 

[39] H. P. Moravec. Robot rover visual navigation: UMI Research Press Ann Arbor, 
Mich, 1981. 

[40] M. Nelson. "Robocode Central." http://robocode.sourceforge.net, 2006. 
[41] N. J. Nilsson. Shakey the Robot: SRI International, 1984. 



98 

[42] H. Nyquist. "Certain Topics in Telegraph Transmission Theory." Proceedings of 
the IEEE, vol. 90, 2002. 

[43] J. Rosenblatt. "DAMN: A distributed Architecture for Mobile Navigation." the 
AAAI Spring Symposium on Lessons Learned for Implemented Software 
Architectures for Physical Agents, pp. 167 - 178, 1995. 

[44] J. Rosenblatt. "Utility Fusion: Map-Based Planning in a Behavior-Based System." 
Field and Service Robotics, pp. 411 -418, 1998. 

[45] P. Sarolahti, "Real-Time Application Interface," Technical Report, University of 
Helsinki, Dept. of Comp. Sci. 2001. 

[46] C. Schlegel. "Communicaions patterns for OROCOS. Hints, remarks, 
specifications." Technical Report, Research Institute for Applied Knoledge 
Processing (FAW), 2002. 

[47] C. Schlegel and R. Worz. "The software framework SMARTSOFT for 
implementing sensorimotor systems." IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS'99), pp. 1610 - 1616, 1999. 

[48] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging 
Dicipline. Upper Saddle River, NJ: Prentice Hall, 1996. 

[49] M. Shuttleworth. "Ubuntu: Linux for human beings." http://www.ubuntu.com/, 
2006. 

[50] W. Stallings. Operating Systems, Third ed. Upper Saddle River, New Jersey 
07458: Prentice Hall, 1998. 

[51] P. Stevens and R. Pooley. Using Uml: Software Engineering with Objects and 
Components: Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 
1999. 

[52] H. Utz, G. Kraetzschmar, G. Mayer, and G. Palm. "Hierarchical Behavior 
Organization." 2005 International Conference on Intelligent Robots and Systems, 
2005. 

[53] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe. "Integrating 
Planning and Learning: The PRODIGY Architecture." Journal of Experimental 
and Theoretical Artificial Intelligence, vol. 7, pp. 81-120, 1995. 

[54] A. J. Wellings. Concurrent and Real-Time Programming in Java. West Sussex 
PO19 8SQ, England: John Wiley & Sons, Ltd, 2004. 

[55] B. Woolley and G. Peterson, "Genetic Evolution of Hierarchical Behavior 
Structures," Technical Report, Air Force Institute of Technology, WPAFB, OH, 
2007. 

[56] B. Woolley and G. Peterson, "Unified Behavior Framework for Reactive Robot 
Control," Technical Report, Air Force Institute of Technology, WPAFB, OH, 
2007. 

[57] K. Yaghmour. "The Real-Time Application Interface." Proceedings of the Linux 
Symposium, July, 2001. 

[58] V. Yodaiken and M. Barabanov. "A Real-Time Linux." Proceedings of the Linux 
Applications Development and Deployment Conference (USELINUX), January 
1997. 

[59] Y. Yokote. "The Apertos Reflective Operating System: The Concept and Its 
Implementation." ACM SIGPLAN Notices, vol. 27, pp. 414-434, 1992. 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
22-03-2007 

2. REPORT TYPE  
Master’s Thesis     

3. DATES COVERED (From – To) 
Aug 2005 – Mar 2007 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
     Unified Behavior Framework for Reactive Robot Control in Real-Time Systems  
   
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
06SN02COR 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Woolley, Brian, G., First Lieutenant, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
    Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way 
    WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCS/ENG/07-11 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 AFRL/SNRN 
    Bldg 620, Room 3AJ39 
    2241 Avionics Circle 
    WPAFB OH 45433-7333                        DSN: 785-6127 ext 4274 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
Endeavors in mobile robotics focus on developing autonomous vehicles that operate in dynamic and uncertain environments. By reducing the need for human-
in-the-loop control, unmanned vehicles are utilized to achieve tasks considered dull or dangerous by humans. Because unexpected latency can adversely affect 
the quality of an autonomous system’s operations, which in turn can affect lives and property in the real-world, their ability to detect and handle external 
events is paramount to providing safe and dependable operation. Behavior-based systems form the basis of autonomous control for many robots. This thesis 
presents the unified behavior framework, a new and novel approach which incorporates the critical ideas and concepts of the existing reactive controllers in an 
effort to simplify development without locking the system developer into using any single behavior system. The modular design of the framework is based on 
modern software engineering principles and only specifies a functional interface for components, leaving the implementation details to the developers. In 
addition to its use of industry standard techniques in the design of reactive controllers, the unified behavior framework guarantees the responsiveness of 
routines that are critical to the vehicle’s safe operation by allowing individual behaviors to be scheduled by a real-time process controller. The experiments in 
this thesis demonstrate the ability of the framework to: 1) interchange behavioral components during execution to generate various global behavior attributes; 
2) apply genetic programming techniques to automate the discovery of effective structures for a domain that are up to 122 percent better than those crafted by 
an expert; and 3) leverage real-time scheduling technologies to guarantee the responsiveness of time critical routines regardless of the system’s computational 
load. 
15. SUBJECT TERMS 
      Artificial Intelligence, Robotics, Real-Time, Software Engineering, Object Oriented Programming 

16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Gilbert L. Peterson, (ENG) 

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF  
     ABSTRACT 
 
UU 

18. NUMBER  
      OF 
      PAGES 
111 19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3636, ext 4281; e-mail:  Gilbert.Peterson@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 
 

 




